Skip to main content

Cold-Adapted Fungi as a Source for Valuable Metabolites

  • Chapter
Psychrophiles: from Biodiversity to Biotechnology

Filamentous fungi, bacteria, especially actinomycetes, plants, algae and many other kind or organisms can produce a vast array of different extrolites. Extrolites is an ecological term for outwards directed metabolites that potentially can play a role in the interaction between organisms (Frisvad et al. 2004, 2007). The collective metabolic term for these compounds is the exometabolome. Many extrolites are secreted, but some stay in the cell wall to protect the fungal, bacterial or plant spores or seeds. Plants, including those from Arctic and alpine areas, protect themselves from herbivores by producing an array of secondary metabolites (Palo 1984; Bryant et al. 1991). In the sea surrounding Antarctica there are many chemical interactions between mollusks and amphipods, algae, urchins and anemones, and between sponges and their predators (Amsler et al. 2001), and in Arctic ecosystems there are indications that secondary metabolites also play a role in the chemical interactions between species (Chapin III et al. 1992). However, these potential interactions have not been studied in any detail in microbiological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amsler CD, McClintock JB, Baker BJ (2001) Secondary metabolites as indicators of trophic interactions among Antarctic marine organisms. Am Zool 41:17–26.

    Article  CAS  Google Scholar 

  • Bernan US, Greenstein M, Maise WM (1997) Marine microorganisms as a source of new natural products. Adv Appl Microbiol 43:57–90.

    Article  CAS  PubMed  Google Scholar 

  • Bhadury P, Mohammed BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337.

    Article  CAS  PubMed  Google Scholar 

  • Biabini MAF, Laatch H (1998) Advances in chemical studies of low-molecular weight metabolites of marine fungi. J Prakt Chem 340:589–607.

    Article  Google Scholar 

  • Blunt JW, Copp BR, Hu W-P, Munro MHG, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86.

    Article  CAS  PubMed  Google Scholar 

  • Bölter M, Kandeler F, Pietr SJ, Seppellt RD (2002) Heterotrophic microbes, microbial and enzymatic activity in Antarctic soil. Ecol Stud 154:189–214.

    Google Scholar 

  • Bradner JR, Gillings M, Nevalainen KMH (1999a) Qualitative assessment of hydrolytic enzymes in Antarctic microfungi grown on solid media. World J Microbiol Biotechnol 15:131–132.

    Article  Google Scholar 

  • Bradner JR, Sidhu RK, Gillings M, Nevalainen KMH (1999b) Hemicellulase activity of Antarctic microfungi. J Appl Microbiol 87:366–370.

    Article  CAS  PubMed  Google Scholar 

  • Bridge PD, Worland MR (2004) First report of an entomophthoralean fungus on an arthropod host in Antarctica. Polar Biol 27:190–192.

    Article  Google Scholar 

  • Bryant JP, Provonza FD, Paster J, Reichardt PD, Clausen TP, du Toit JT (1991) Interactions between woody plants and browsing animals mediated by secondary metabolites. Annu Rev Ecol Syst 22:431–436.

    Article  Google Scholar 

  • Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Cairns AJ, Howart CJ, Pollock CJ (1995) Characterization of acid invertase from the snow mold Monographella nivalis, a mesophilic enzyme from a psychrophilic fungus. New Phytol 130:391–400.

    Article  CAS  Google Scholar 

  • Cavicchioli RK, Siddiqui S, Andrews C, Sowers KR (2002) Low-temperature extremophiles and their application. Curr Opin Biotechnol 13:1–9.

    Article  CAS  Google Scholar 

  • Chapin III FH, Jeffries RL, Reynolds JF, Shaver GR, Svododa J, Chu EW (1992) Arctic ecosystems in a changing climate. Academic Press, San Diego.

    Google Scholar 

  • Dalsgaard PW, Larsen TO, Christophersen C (2004a) Psychrophilin A and cycloaspeptide D, novel cyclic peptides from the psychrotolerant fungus Penicillium ribeum. J Nat Prod 67:878–881.

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard PW, Blunt JW, Munro MHG, Larsen TO, Christophersen C (2004b) Psychrophilin B and C: Cyclic nitropeptides from the psychrotolerant fungus Penicillium rivulum. J Nat Prod 67:1950–1952.

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard PW, Blunt JW, Munro JWG, Frisvad JC, Christophersen C (2005a) Communesin G and H, new alkaloids from the psychrotolerant fungus Penicillium rivulum. J Nat Prod 68:258–261.

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard PW, Larsen TO, Christophersen C (2005b) Bioactive cyclic peptide from the psychrotolerant fungus Penicillium algidum. J Antibiot 58:141–144.

    Article  CAS  PubMed  Google Scholar 

  • Dexter Y, Cooke RC (1984) Fatty acids, sterols and carotenoids of the psychrophilic Mucor strictus and some mesophilic Mucor species. Trans Br Mycol Soc 83:455–461.

    Article  CAS  Google Scholar 

  • Ebel R (2006) Secondary metabolites from marine-derived fungi. In: Proksch P, Müller WEG (eds) Frontiers in marine biotechnology. Horizon Bioscience, London, pp 73–143.

    Google Scholar 

  • Faulkner DJ (1999) Marine natural products. Nat Prod Rep 16:155–198.

    Article  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: Molecular basis and cold adaptation. Cell Mol Life Sci 53:830–841.

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208.

    Article  CAS  PubMed  Google Scholar 

  • Fenice M, Selbmann L, Zucchoni L, Onofri S (1997) Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275–280.

    Article  Google Scholar 

  • Fenice M, Selbmann L, Di Giambattista R, Federici F (1998) Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii. Res Microbiol 149:289–300.

    Article  CAS  PubMed  Google Scholar 

  • Flam F (1994) Chemical prospectors scour the seas for promising drugs. Science 226:1324–1325.

    Article  Google Scholar 

  • Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of the food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–173.

    Article  Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–242.

    Article  Google Scholar 

  • Frisvad JC, Larsen TO, Dalsgaard PW, Seifert KA, Louis-Seize G, Lyhne EK, Jarvis BB, Fettinger JC, Overy DP (2006) Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, P. jamesonlandense sp. nov., P. ribium sp. nov., P. soppii and P. lanosum. Int J Syst Evol Microbiol 56:1427–1437.

    Article  CAS  PubMed  Google Scholar 

  • Frisvad JC, Andersen B, Thrane U (2007) The use of secondary metabolite profiling in chemotaxonomy of fungi. Mycol Res 111, in press.

    Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claveria P, Collins T, D ‘Amico M, Dumont J, Garsoux G Geolette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107.

    Article  CAS  PubMed  Google Scholar 

  • Gomes J, Steiner W (2004) Extremophiles and extremozymes. Food Technol Biotechnol 42:223–235.

    CAS  Google Scholar 

  • Gudjarnnson S (1999) Bioactive marine natural products. Rit Fiskideildar 16:107–110.

    Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, and Plemenitas A (2003) Extremophilic fungi in arctic ice: A relation between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278.

    Google Scholar 

  • Hammonds P, Smith JN (1986) Lipid composition of a psychrophilic, a mesophilic and a thermophilic Mucor species. Trans Br Mycol Soc 86:551–560.

    Article  CAS  Google Scholar 

  • Hentschel U (2002) Natural products from marine microorganisms. ChemBioChem 3:1151–1154.

    Article  CAS  PubMed  Google Scholar 

  • Höller U, Wright AD, Matthée GF, Konig GM, Drager S, Aust H-J, Schulz B (2000) Fungi from marine sponges: Diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365.

    Article  Google Scholar 

  • Hoshino T, Ohgiya S, Shimanuki T, Ishizaki K (1996) Production of low temperature active lipase from the pink snow mold Microdochium nivale (syn. Fusarium nivale). Biotechnol Lett 18:509–510.

    Article  CAS  Google Scholar 

  • Istokovics A, Morita N, Izumi K, Hoshino T, Yumoto I, Sawada MT, Ishizaki K, Okyama H (1998) Neutral lipids, phospholipids, and a betain lipid of the snow mold fungus Microdochium nivale. Can J Microbiol 44:1051–1059.

    Article  CAS  Google Scholar 

  • Jensen PR, Fenical W (2000) Marine drugs and drug discovery: Current status and future potential. In: Fusetani N (ed) Drugs from the sea. Karger, Basel, pp 6–29.

    Chapter  Google Scholar 

  • Kerekes R, Nagy G (1980) Membrane lipid composition of a mesophilic and psychrophilic yeast. Acta Aliment 9:93–98.

    CAS  Google Scholar 

  • Konig GM, Kehraus S, Seibert SF, Abdel-Leteff A, Muller D (2006) Natural products from marine organisms and their associated microbes. ChemBioChem 7:229–238.

    Article  PubMed  CAS  Google Scholar 

  • Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672–695.

    Article  CAS  PubMed  Google Scholar 

  • Lewer P, Graupner PR, Hahn DR, Karr LL, Duebelbeis DO, Lira JM, Anzeveno PB, Fields SC, Gilbert JR, Pearce C (2006) Discovery, synthesis, and insecticidal activity of cycloaspeptide E. J Nat Prod 69:1506–1510.

    Article  CAS  PubMed  Google Scholar 

  • Linder MB, Szilvay GR, Nakari-Sttala T, Penttila ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896.

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Catranis CM, Starmer WT, Rogers SO (1999a) Revival and characterization of fungi from ancient polar ice. Mycologist 13:70–73.

    Article  Google Scholar 

  • Ma L, Rogers SO, Catranis CM, Starmer TS (1999b) Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 92:286–295.

    Article  Google Scholar 

  • Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14.

    Article  CAS  Google Scholar 

  • Margesin R, Fauster V, Fonteyne P-A (2005) Characterization of cold-adaptede pectate-lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459.

    Article  CAS  PubMed  Google Scholar 

  • Marshall WA (1998) Aerial transport of keratinaceous substrate and distribution of the fungus Geomyces pannorum in Antarctic soils. Microb Ecol 36:212–219.

    Article  PubMed  Google Scholar 

  • McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111.

    Article  Google Scholar 

  • Mercantini R, Marsella R, Moretto D, Finotti E (1993) Keratinophilic fungi in the Antarctic environment. Mycopathologia 122:169–175.

    Article  CAS  PubMed  Google Scholar 

  • Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE, Li S, Battershill CN, Duckworth AR (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25.

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Hill RT (2006) New drugs from marine microbes: the tide is turning. J Ind Microbiol Biotechnol 33:539–544.

    Article  CAS  PubMed  Google Scholar 

  • Newstead WJ, Huner NPA (2005) Major sclerotial polypeptides of psychrophilic pathogenic fungi: intracellular localization and antigenic relatedness. Protoplasma 147:162–169.

    Article  Google Scholar 

  • Palo RT (1994) Distribution of birch, willow and poplar secondary metabolites and their potential role as chemical defense against herbivores. J Chem Ecol 10:499–520.

    Article  Google Scholar 

  • Paul VJ, Puglisi MP, Ritson-Williams R (2006) Marine chemical ecology. Nat Prod Rep 23:153–180.

    Article  CAS  PubMed  Google Scholar 

  • Pietra F (1997) Secondary metabolites from marine microorganisms—bacteria, protozoa, algae and fungi—achievements and prospectives. Nat Prod Rep 14:453–464.

    Article  CAS  PubMed  Google Scholar 

  • Rinehart KI (1992) Secondary metabolites from marine organisms. In: Chadwick DJ, Whelan J (eds) Secondary metabolites: Their function and evolution. Ciba foundation symposium 171, Wiley, Chicester, pp 236–245.

    Chapter  Google Scholar 

  • Russell NJ (2000) Towards an understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90.

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C, Braeger S, Kömmert A-K, Krohn K (2002) Endophytic fungi: A source of novel biologically active secondary metabolites. Mycol Res 106:996–1004.

    Article  CAS  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2005) Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches. FEMS Microbiol Ecol 53:51–60.

    Article  CAS  PubMed  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in Arctic subglacial ice. Microb Ecol 52:207–216.

    Article  PubMed  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2007a) Genetic variation among Penicillium crustosum isolates from arctic and other ecological niches. Microb Ecol, in press.

    Google Scholar 

  • Sonjak S, UrÅ¡icˇ V, Frisvad JC, Gunde-Cimerman N (2007b) Penicillium svalbardense, a new species from Arctic glacial ice. Antonie van Leeuwenhoek 92:43–51.

    Article  CAS  PubMed  Google Scholar 

  • Takasawa T, Sugisaki Y, Yagi K, Uchiyama K, Aoki A, Tanaka K (1997) Polygalacturonase isolated from the culture of the psychrophilic fungus Sclerotinia borealis. Can J Microbiol 43:417–424.

    Article  CAS  PubMed  Google Scholar 

  • Tibbett M, Sanders FE, Cairney JWG (1988a) The effect of temperature and inorganic phosphorous supply on growth and acid phosphatase production on arctic and temperate Hebeloma spp. in axenic culture. Mycol Res 102:129–135.

    Article  Google Scholar 

  • Tibbett M, Grantham K, Sanders FE, Cairney JWG (1988b) Induction of cold-active acid phosphomonoesterase activity at low temperature in psychrotrophic ectomycorrhizal Hebeloma spp. Mycol Res 102:1533–1539.

    Article  Google Scholar 

  • Tibbett M, Sanders FE, Cairney JWG, Leake JF (1989) Temperature regulation of extracellular proteases in ectomycorrhizal fungi (Hebeloma spp.) grown in axenic culture. Mycol Res 103:707–714.

    Article  Google Scholar 

  • Turner WB (1971) Fungal metabolites. Academic Press, London.

    Google Scholar 

  • Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic Press, London.

    Google Scholar 

  • Verbist JF, Sallenave C, Pruchus YF (2000) Marine fungal substances. In: Atta-Ur-Rahman (ed) Studies in natural products chemistry, vol 24. Elsevier, Amsterdam, pp 979–1092.

    Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15.

    Article  CAS  PubMed  Google Scholar 

  • Volkmann M, Whitehead K, Rüttgers H, Rullkötter J, Gorbushina AA (2003) Mycosporine-glutamicol-glucoside: A natural UV absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Com Mass Spectrom 17:897–902.

    Article  CAS  Google Scholar 

  • Weete JD, Gandhi SR (1999) Sterols and fatty acids of the Mortierellaceae: taxonomic implications. Mycologia 91:642–649.

    Article  CAS  Google Scholar 

  • Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frisvad, J.C. (2008). Cold-Adapted Fungi as a Source for Valuable Metabolites. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_22

Download citation

Publish with us

Policies and ethics