Skip to main content

The limitations of terrestrial life are not well-defined or understood and have primarily been advanced through exploration and discovery of organisms living in “extreme” environments where life was not thought possible. Identifying the limits of life is hampered by our inability to define the essential nature of life, rather than just describing its properties (organization, energy use, growth, adaptation, response to stimuli, reproduction). Similarly, until the twentieth century, we could not define the essential nature of water (a molecule composed of two atoms of hydrogen and one atom of oxygen joined by covalent bonds), only its properties (colorless, solvent, liquid at specific temperatures and pressures). Additionally, when examining the limits of life, defining what is “alive” becomes more difficult. The metabolism of life is often separated into three classes: growth, maintenance, and survival (Morita 1997). Clearly an organism that is metabolizing actively enough to reproduce itself exhibits growth and is considered living. But what about organisms that are actively metabolizing but not reproducing? In this case, energy is consumed for repair and maintenance of cellular structures to preserve the integrity of the organism, but cannot sustain reproduction. Maintenance may also allow adaptation and evolution to changing conditions over very long time spans (other definitions of maintenance do not generally include evolution). Finally, organisms routinely survive conditions at which they cannot actively metabolize by forming completely inactive dormant states (such as spores) or with very weak intermittent metabolism for the repair of accumulated damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326.

    Article  PubMed  Google Scholar 

  • Barrett P (2003) Cooling a continent. Nature 421:221–223.

    Article  CAS  PubMed  Google Scholar 

  • Beaty D, Buxbaum K, Meyer M, Barlow N, Boynton W, Clark B, Deming J, Doran PT, Edgett K, Hancock S, Head J, Hecht M, Hipkin V, Kieft T, Mancinelli R, McDonald E, McKay C, Mellon M, Newsom H, Ori G, Paige D, Schuerger AC, Sogin M, Spry JA, Steele A, Tanaka K, Voytek M (2006) Findings of the Mars Special Regions Science Analysis Group. Astrobiology 6:677–732.

    Article  Google Scholar 

  • Bock C, Eicken H (2005) A magnetic resonance study of temperature-dependent microstructural evolution and self-diffusion of water in Arctic first-year sea ice. Ann Glaciol 40:179–184.

    Article  Google Scholar 

  • Bowman JP (2004) Psychrophilic prokaryote structural-functional relationships, biogeography and evolution within marine sediment. Cell Mol Biol 50:503–513.

    CAS  PubMed  Google Scholar 

  • Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”. Microb Ecol 47:300–304.

    Article  CAS  PubMed  Google Scholar 

  • Cary JW, Mayland HF (1972) Salt and water movement in unsaturated frozen soil. Soil Sci Soc Am Proc 36:549.

    CAS  Google Scholar 

  • Cavicchioli R, Thomas T, Curmi PMG (2000) Cold stress response in Archaea. Extremophiles 4:321–331.

    Article  CAS  PubMed  Google Scholar 

  • Chamot D, Owttrim GW (2000) Regulation of cold shock-induced RNA helicase gene expression in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 182:1251–1256.

    Article  CAS  PubMed  Google Scholar 

  • Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15°C. Appl Environ Microbiol 68:6435–6438.

    Article  CAS  PubMed  Google Scholar 

  • Dalluge JJ, Hamamoto T, Horikoshi K, Morita RY, Stetter KO, McCloskey JA (1997) Posttransciptional modification of tRNA in psychrophilic bacteria. J Bacteriol 179:1918–1923.

    CAS  PubMed  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. Embo Reports 7:385–389.

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Gerday C, Feller G (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276:25791–25796.

    Article  PubMed  Google Scholar 

  • Daniel RM, Dunn RV, Finney JL, Smith JC (2003) The role of dynamics in enzyme activity. Ann Rev Biophys Biomol Struct 32:69–92.

    Article  CAS  Google Scholar 

  • Daniel RM, Smith JC, Ferrand M, Hery S, Dunn R, Finney JL (1998) Enzyme activity below the dynamical transition at 220 K. Biophys J 75:2504–2507.

    Article  CAS  PubMed  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309.

    Article  CAS  PubMed  Google Scholar 

  • Denton GH, Karlen W (1973) Lichenometry: its application to holocene moraine studies in sourthern Alaska and Swedish Lapland. Arct Alp Res 5:347–372.

    Article  Google Scholar 

  • D’Hondt S, Jorgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs KU, Holm NG, Mitterer R, Spivack A, Wang GZ, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guerin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221.

    Article  PubMed  CAS  Google Scholar 

  • Drost-Hansen W (2001) Temperature effects on cell-functioning—A critical role for vicinal water. Cell Mol Biol 47:865–883.

    CAS  PubMed  Google Scholar 

  • Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11:211–216.

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microb Rev 18:189–202.

    Article  CAS  Google Scholar 

  • Fields PA (2001) Review: Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A Physiol 129:417–431.

    Article  CAS  Google Scholar 

  • Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69.

    Article  CAS  PubMed  Google Scholar 

  • Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost—an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341.

    Article  CAS  PubMed  Google Scholar 

  • Gilichinsky D, Vorobyova EA, Erokhina LG, Fedorov-Davydov DG, Chaikovskaya NR (1992) Long-term preservation of microbial ecosystems in permafrost. Adv Space Res 12:255–263.

    Article  CAS  PubMed  Google Scholar 

  • Graumann P, Marahiel MA (1996) Some like it cold: Response of microorganisms to cold shock. Arch Microbiol 166:293–300.

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB, Cronan JE (1978) Estimate of minimum amount of fluid lipid required for growth of Escherichia coli. Biochim Biophys Acta 512:472–479.

    Article  CAS  PubMed  Google Scholar 

  • Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–350.

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202.

    Article  CAS  PubMed  Google Scholar 

  • Johnston CG, Vestal JR (1991) Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities—are they the slowest-growing communities on Earth? Appl Environ Microbiol 57:2308–2311.

    CAS  PubMed  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557.

    Article  CAS  PubMed  Google Scholar 

  • Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429.

    Article  CAS  PubMed  Google Scholar 

  • Kappen LB, Schroeter B, Scheidegger C, Sommerkorn M, Hestmark G (1996) Cold resistance and metabolic activity of lichens below 0˚C. Adv Space Res 18:119–128.

    Article  Google Scholar 

  • Kawahara H (2002) The structures and functions of ice crystal-controlling proteins from bacteria. J Biosci Bioeng 94:492–496.

    CAS  PubMed  Google Scholar 

  • Khachane AN, Timmis KN, dos Santos VAPM (2005) Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucl Acids Res 33:4016–4022.

    Article  CAS  PubMed  Google Scholar 

  • Kohshima S (1984) A novel cold-tolerant insect found in a Himalayan glacier. Nature 310:225–227.

    Article  Google Scholar 

  • Lin LH, Wang PL, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Lollar BS, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482.

    Article  CAS  PubMed  Google Scholar 

  • Melchior DL (1982) Lipid phase-transitions and regulation of membrane fluidity in prokaryotes. Curr Top Membr Transport 17:263–316.

    Article  CAS  Google Scholar 

  • Mindock CA, Petrova MA, Hollingsworth RI (2001) Re-evaluation of osmotic effects as a general adaptative strategy for bacteria in sub-freezing conditions. Biophys Chem 89:13–24.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Wintrode PL, Grayling RA, Rubingh DN, Arnold FH (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297:1015–1026.

    Article  CAS  PubMed  Google Scholar 

  • Morita RY (1997) Bacteria in oligotrophic environments. Chapman & Hall, New York.

    Google Scholar 

  • Nedwell DB (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microb Ecol 30:101–111.

    Article  CAS  Google Scholar 

  • Noon KR, Guymon R, Crain PF, McCloskey JA, Thomm M, Lim J, Cavicchioli R (2003) Influence of temperature on tRNA modification in Archaea: Methanococcoides burtonii (optimum growth temperature, 23°C) and Stetteria hydrogenophila (Topt, 95°C). J Bacteriol 185:5483–5490.

    Article  CAS  PubMed  Google Scholar 

  • Panikov NS, Flanaganb PW, Oechelc WC, Mastepanovd MA, Christensend TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794.

    Article  CAS  Google Scholar 

  • Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59:500–512.

    Article  CAS  PubMed  Google Scholar 

  • Phadtare S, Inouye M, Severinov K (2002) The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J Biol Chem 277:7239–7245.

    Article  CAS  PubMed  Google Scholar 

  • Pomeroy LR, Wiebe WJ (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol 23:187–204.

    Article  Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251.

    Article  CAS  PubMed  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636.

    Article  CAS  PubMed  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233.

    Article  CAS  PubMed  Google Scholar 

  • Rivkina EM, Laurinavichus KS, Gilichinsky DA, Shcherbakova VA (2002) Methane generation in permafrost sediments. Doklady Biol Sci V383:179–181.

    Article  Google Scholar 

  • Russell N, Hamamoto T (1998) Psychrophiles. In: Horikoshi K, Grant WD (eds) Extremophiles: Microbial life in extreme environments. Wiley-Liss, New York, pp 25–45.

    Google Scholar 

  • Russell NJ (1997) Psychrophilic bacteria—Molecular adaptations of membrane lipids. Comp Biochem Physiol Part A: Physiol 118:489–493.

    Article  CAS  Google Scholar 

  • Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90.

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ, Fukunaga N (1990) A comparison of thermal adaptation of membrane-lipids in psychrophilic and thermophilic Bacteria. FEMS Microbiol Rev 75:171–182.

    Article  CAS  Google Scholar 

  • Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL (2006) The basis for hyperactivity of antifreeze proteins. Cryobiology 53:229–239.

    Article  CAS  PubMed  Google Scholar 

  • Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Damste JSS, Dickens GR, Huber M, Reichart GJ, Stein R, Matthiessen J, Lourens LJ, Pedentchouk N, Backman J, Moran K (2006) Subtropical arctic ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441:610–613.

    Article  CAS  PubMed  Google Scholar 

  • Sowers T (2001) The N2O record spanning the penultimate deglaciation from the Vostok ice core. J Geophys Res Atmos 106:31903–31914.

    Article  CAS  Google Scholar 

  • Sun HJ, Friedmann EI (1999) Growth on geological time scales in the Antarctic cryptoendolithic microbial community. Geomicrobiol J 16:193–202.

    Article  Google Scholar 

  • Tung HC, Bramall NE, Price PB (2005) Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc Natl Acad Sci USA 102:18292–18296.

    Article  CAS  PubMed  Google Scholar 

  • Tung HC, Price PB, Bramall NE, Vrdoljak G (2006) Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice. Astrobiology 6:69–86.

    Article  CAS  PubMed  Google Scholar 

  • Ugolini FC, Anderson DM (1973) Ionic migration and weathering in frozen Antarctic soils. Soil Sci 115:461–470.

    Article  CAS  Google Scholar 

  • Williams R, Frausto da Silva J (1996) The natural selection of the chemical elements: the environment and life’s chemistry. Oxford University Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bakermans, C. (2008). Limits for Microbial Life at Subzero Temperatures. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_2

Download citation

Publish with us

Policies and ethics