Skip to main content

Proteomic Studies of Psychrophilic Microorganisms

  • Chapter
Psychrophiles: from Biodiversity to Biotechnology

Research on psychrophilic microorganisms has entered the post-genomic era [in this chapter, psychrophilic and psychrotolerant (or psychrotrophic) microorganisms are not distinguished, and the term “psychrophilic microorganisms” is used throughout]. As of December 2006, complete genomic DNA sequences are available for the following eight psychrophilic microorganisms according to Genomes OnLine Database (http://www.genomesonline.org/): Desulfotalea psychrophila LSv54 (Rabus et al. 2004), Photobacterium profundum SS9 (Vezzi et al. 2005), Psychrobacter articus 273–4 (unpublished), Colwellia psychrerythraea 34H (Methe et al. 2005), Pseudoalteromonas haloplanktis TAC125 (Medigue et al. 2005), Methanococcoides burtonii DSM6242 (unpublished), Psychrobacter cryohalolentis K5 (unpublished), and Psychromonas ingrahamii 37 (unpublished). In addition, genome projects on many other psychrophilic microorganisms, including Flavobacterium psychrophilum, Polaribacter irgensii 23-P, Psychroflexus torquis ATCC 700755, Psychromonas sp. CNPT3, Shewanella livingstonensis Ac10, Shewanella violacea DSS12, and Vibrio salmonicida LFI1238, are in progress. These sequence data provide a framework for fundamental and application studies of psychrophilic microorganisms. With the aid of these data, it is possible to make global identification of proteins expressed under a particular growth condition. In this chapter, proteomic studies of psychrophilic microorganisms, which will give us an important clue to elucidate their cold-adapta-tion mechanism, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF (2007) Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles 11:343–354.

    Article  CAS  PubMed  Google Scholar 

  • Berger F, Morellet N, Menu F, Potier P (1996) Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 178:2999–3007.

    CAS  PubMed  Google Scholar 

  • Berger F, Normand P, Potier P (1997) capA, a cspA-like gene that encodes a cold acclimation protein in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 179:5670–5676.

    CAS  PubMed  Google Scholar 

  • Brigulla M, Hoffmann T, Krisp A, Volker A, Bremer E, Volker U (2003) Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 185:4305–4314.

    Article  CAS  PubMed  Google Scholar 

  • Drouin P, Prevost D, Antoun H (2000) Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp. (1). FEMS Microbiol Ecol 32:111–120.

    CAS  PubMed  Google Scholar 

  • Goodchild A, Saunders NF, Ertan H, Raftery M, Guilhaus M, Curmi PM, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321.

    Article  CAS  PubMed  Google Scholar 

  • Goodchild A, Raftery M, Saunders NF, Guilhaus M, Cavicchioli R (2005) Cold adaptation of the Antarctic archaeon, Methanococcoides burtonii assessed by proteomics using ICAT. J Proteome Res 4:473–480.

    Article  CAS  PubMed  Google Scholar 

  • Hebraud M, Potier P (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1:211–219.

    CAS  PubMed  Google Scholar 

  • Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N (2007) Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Aclo, for global identificaion of cold-inducible poteins. Extremophiles in press.

    Google Scholar 

  • Medigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335.

    Article  CAS  PubMed  Google Scholar 

  • Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918.

    Article  CAS  PubMed  Google Scholar 

  • Michel V, Lehoux I, Depret G, Anglade P, Labadie J, Hebraud M (1997) The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins. J Bacteriol 179:7331–7342.

    CAS  PubMed  Google Scholar 

  • Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, Amann J, Gellner K, Teeling H, Leuschner WD, Glockner FO, Lupas AN, Amann R, Klenk HP (2004) The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6:887–902.

    Article  CAS  PubMed  Google Scholar 

  • Seo JB, Kim HS, Jung GY, Nam MH, Chung JH, Kim JY, Yoo JS, Kim CW, Kwon O (2004) Psychrophilicity of Bacillus psychrosaccharolyticus: a proteomic study. Proteomics 4:3654–3659.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S (2004) Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp. SIB1 in cold-adaptation. Eur J Biochem 271:1372–1381.

    Article  CAS  PubMed  Google Scholar 

  • Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461.

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Ponder MA, Shih JY, Tiedje JM, Thomashow MF, Lubman DM (2007) A proteomic analysis of Psychrobacter articus 273–4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 28:467–488.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kurihara, T., Esaki, N. (2008). Proteomic Studies of Psychrophilic Microorganisms. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_19

Download citation

Publish with us

Policies and ethics