Skip to main content

Change in temperature is one of the most common stresses faced by all living organisms. Microorganisms, which encounter significant shifts to either high or low temperatures in their natural habitats, are equipped with cellular mechanisms to respond and adapt to these changes. The focus of research in previous years had been heat shock response and adaptation, as heat shock causes well-defined changes in cell such as protein unfolding. On the other hand, effect of cold shock was thought to be more of a general nature, for example slowing down of metabolic activities. Recent observations have changed this outlook on cold-shock response and shown it to be a specific response of cell at various levels such as cytoplasmic membrane, ribosomes, nucleic acids, and proteins. Cold-shock proteins are induced upon temperature downshift and play a significant role in acclimation of cells to cold (for reviews, see Yamanaka et al. 1998; Phadtare et al. 1999, 2000; Ermolenko and Makhatadze 2002; Weber and Marahiel 2003; Phadtare 2004). In this chapter, we describe salient features of bacterial cold-shock response and cold-shock proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agafonov DE, Kolb VA, Spirin AS (2001) Ribosome-associated protein that inhibits translation at the aminoacyl-tRNA binding stage. EMBO Rep 2:399–402.

    CAS  PubMed  Google Scholar 

  • Aguilar PS, Cronan JE Jr, de Mendoza D (1998) A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180:2194–2200.

    CAS  PubMed  Google Scholar 

  • Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. Embo J 20:1681–1691.

    Article  CAS  PubMed  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109.

    Article  PubMed  Google Scholar 

  • Bae W, Xia B, Inouye M, Severinov K (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci USA 97:7784–7789.

    Article  CAS  PubMed  Google Scholar 

  • Beckering CL, Steil L, Weber MH, Volker U, Marahiel MA (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184:6395–6402.

    Article  CAS  PubMed  Google Scholar 

  • Berger F, Normand P, Potier P (1997) capA, a cspA-like gene that encodes a cold acclimation protein in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 179:5670–5676.

    CAS  PubMed  Google Scholar 

  • Blaha, G, Wilson DN, Stoller G, Fischer G, Willumeit R, Nierhaus KH (2003) Localization of the trigger factor binding site on the ribosomal 50S subunit. J Mol Biol 326:887–897.

    Article  CAS  PubMed  Google Scholar 

  • Chapot-Chartier MP, Schouler C, Lepeuple AS, Gripon JC, Chopin MC (1997) Characterization of cspB, a cold-shock-inducible gene from Lactococcus lactis, evidence for a family of genes homologous to the Escherichia coli cspA major cold shock gene. J Bacteriol 179:5589–5593.

    CAS  PubMed  Google Scholar 

  • Dammel CS, Noller HF (1995) Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9:626–637.

    Article  CAS  PubMed  Google Scholar 

  • Dersch P, Kneip S, Bremer E (1994) The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment. Mol Gen Genet 245:255–259.

    Article  CAS  PubMed  Google Scholar 

  • Derzelle S, Hallet B, Ferain T, Delcour J, Hols P (2003) Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins. Appl Environ Microbiol 69:4285–4290.

    Article  CAS  PubMed  Google Scholar 

  • Donovan WP, Kushner SR (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci USA 83:120–124.

    Article  CAS  PubMed  Google Scholar 

  • Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59:1902–1913.

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Tejero R, Zimmerman DE, Inouye M, Montelione GT (1998) Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry 37:10881–10896.

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Huang H, Liao J, Cohen SN (2001) Escherichia coli poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J Biol Chem 276:31651–31656.

    Article  CAS  PubMed  Google Scholar 

  • Friedman DI, Olson ER, Georgopoulos C, Tilly K, Herskowitz I, Banuett F (1984) Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. Microbiol Rev 48:299–325.

    CAS  PubMed  Google Scholar 

  • Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 87:283–287.

    Article  CAS  PubMed  Google Scholar 

  • Gombos Z, Wada H, Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc Natl Acad Sci USA 89:9959–9963.

    Article  CAS  PubMed  Google Scholar 

  • Gombos Z, Wada H, Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci USA 91:8787–8791.

    Article  CAS  PubMed  Google Scholar 

  • Graumann P, Schroder K, Schmid R, Marahiel MA (1996) Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol 178:4611–4619.

    CAS  PubMed  Google Scholar 

  • Graumann P, Wendrich TM, Weber MH, Schroder K, Marahiel MA (1997) A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25:741–756.

    Article  CAS  PubMed  Google Scholar 

  • Gualerzi CO, Pon CL (1990) Initiation of mRNA translation in prokaryotes. Biochemistry 29:5881–5889.

    Article  CAS  PubMed  Google Scholar 

  • Hanna MM, Liu K (1998) Nascent RNA in transcription complexes interacts with CspE, a small protein in E. coli implicated in chromatin condensation. J Mol Biol 282:227–239.

    Article  CAS  PubMed  Google Scholar 

  • Hebraud M, Potier P (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1:211–219.

    CAS  PubMed  Google Scholar 

  • Hu KH, Liu E, Dean K, Gingras M, DeGraff W, Trun NJ (1996) Overproduction of three genes leads to camphor resistance and chromosome condensation in Escherichia coli. Genetics 143:1521–1532.

    CAS  PubMed  Google Scholar 

  • Ishizaki-Nishizawa O, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T, Toguri T (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat Biotechnol 14:1003–1006.

    Article  CAS  PubMed  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm, BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524.

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202.

    Article  CAS  PubMed  Google Scholar 

  • Jones PG, Inouye M (1994) The cold-shock response—a hot topic. Mol Microbiol 11: 811–818.

    Article  CAS  PubMed  Google Scholar 

  • Kaan T, Homuth G, Mader U, Bandow J, Schweder T (2002) Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 148:3441–3455.

    CAS  PubMed  Google Scholar 

  • Kandror O, Goldberg AL (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA 94:4978–4981.

    Article  CAS  PubMed  Google Scholar 

  • Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732.

    Article  CAS  PubMed  Google Scholar 

  • Kaneda T (1967) Fatty acids in the genus Bacillus Iso- and anteiso-fatty acids as characteristic constituents of lipids in 10 species. J Bacteriol 93:894–903.

    CAS  PubMed  Google Scholar 

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302.

    CAS  PubMed  Google Scholar 

  • Kaplan F, Guy CL (2004) {beta}-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135:1674–1684.

    Article  CAS  PubMed  Google Scholar 

  • Katzif S, Danavall D, Bowers S, Balthazar JT, Shafer WM (2003) The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human cathepsin G. Infect Immun 71:4304–4312.

    Article  CAS  PubMed  Google Scholar 

  • Krispin O, Allmansberger R (1995) Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol Lett 134:129–135.

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Xie A, Jiang W, Etchegaray JP, Jones PG, Inouye M (1994) Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol 11:833–839.

    Article  CAS  PubMed  Google Scholar 

  • Lelivelt MJ, Kawula TH (1995) Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J Bacteriol 177:4900–4907.

    CAS  PubMed  Google Scholar 

  • Lopez MM, Yutani K, Makhatadze GI (2001) Interactions of the cold shock protein CspB from Bacillus subtilis with single-stranded DNA. Importance of the T base content and position within the template. J Biol Chem 276:15511–15518.

    Article  CAS  PubMed  Google Scholar 

  • Maier R, Eckert B, Scholz C, Lilie H, Schmid FX (2003) Interaction of trigger factor with the ribosome. J Mol Biol 326:585–592.

    Article  CAS  PubMed  Google Scholar 

  • Mangoli S, Sanzgiri VR, Mahajan SK (2001) A common regulator of cold and radiation response in Escherichia coli. J Environ Pathol Toxicol Oncol 20:23–26.

    CAS  PubMed  Google Scholar 

  • Mitta, M, Fang L, Inouye M (1997) Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol 26:321–335.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima T, Kataoka K, Ogata Y, Inoue R, Sekimizu K (1997) Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol Microbiol 23:381–386.

    Article  CAS  PubMed  Google Scholar 

  • Moll I, Huber M, Grill S, Sairafi P, Mueller F, Brimacombe R, Londei P, Blasi U (2001) Evidence against an interaction between the mRNA downstream box and 16S rRNA in translation initiation. J Bacteriol 183:3499–3505.

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308:1–8.

    CAS  PubMed  Google Scholar 

  • Nakaminami K, Karlson, DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci USA 103:10122–10127.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Kanamaru K, Mizuno T, Horikoshi K (1996) A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol 178:2994–2997.

    CAS  PubMed  Google Scholar 

  • Newkirk K, Feng W, Jiang W, Tejero R, Emerson SD, Inouye M, Montelione GT (1994) Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc Natl Acad Sci USA 91:5114–5118.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama SI, Umemura T, Nara T, Homma M, Kawagishi I (1999) Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant. Mol Microbiol 32:357–365.

    Article  CAS  PubMed  Google Scholar 

  • Orlova IV, Serebriiskaya TS, Popov V, Merkulova N, Nosov AM, Trunova TI, Tsydendambaev VD, Los DA (2003) Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol 44:447–450.

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Chen XL, Shun CY, He HL, Zhang YZ (2005) Stabilization of cold-adapted protease MCP-01 promoted by trehalose: prevention of the autolysis. Protein Pept Lett 12: 375–378.

    Article  CAS  PubMed  Google Scholar 

  • Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136.

    CAS  PubMed  Google Scholar 

  • Phadtare S, Inouye M (1999) Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli. Mol Microbiol 33:1004–1014.

    Article  CAS  PubMed  Google Scholar 

  • Phadtare S, Inouye M (2001) Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol 183: 1205–1214.

    Article  CAS  PubMed  Google Scholar 

  • Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2:175–180.

    Article  CAS  PubMed  Google Scholar 

  • Phadtare S, Yamanaka K, Inouye M (2000) The Cold Shock Response. In: Storz G, Hengge-Aronis R (ed) The bacterial stress responses. ASM Press, Washington DC, pp 33–45.

    Google Scholar 

  • Phadtare S, Inouye M, Severinov K (2002a) The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J Biol Chem 277:7239–7245.

    Article  CAS  PubMed  Google Scholar 

  • Phadtare S, Tyagi S, Inouye M, Severinov K (2002b) Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells. J Biol Chem 277:46706–46711.

    Article  CAS  PubMed  Google Scholar 

  • Phadtare S, Inouye M (2004) Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 186:7007–7014.

    Article  CAS  PubMed  Google Scholar 

  • Porankiewicz J, Clarke AK (1997) Induction of the heat shock protein ClpB affects cold acclimation in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 179:5111–5117.

    CAS  PubMed  Google Scholar 

  • Porankiewicz J, Schelin J, Clarke AK (1998) The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Mol Microbiol 29:275–283.

    Article  CAS  PubMed  Google Scholar 

  • Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22:877–882.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Bryant DA (1997) Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002. Mol Microbiol 23:1281–1292.

    Article  CAS  PubMed  Google Scholar 

  • Sand O, Gingras M, Beck N, Hall C, Trun N (2003) Phenotypic characterization of overexpression or deletion of the Escherichia coli crcA, cspE and crcB genes. Microbiology 149:2107–2117.

    Article  CAS  PubMed  Google Scholar 

  • Schindelin H, Marahiel MA, Heinemann U (1993) Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364:164–168.

    Article  CAS  PubMed  Google Scholar 

  • Schindelin H, Jiang W, Inouye M, Heinemann U (1994) Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 91:5119–5123.

    Article  CAS  PubMed  Google Scholar 

  • Schnuchel A, Wiltscheck R, Czisch M, Herrler M, Willimsky G, Graumann P, Marahiel MA, Holak TA (1993) Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature 364:169–171.

    Article  CAS  PubMed  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525.

    Article  CAS  PubMed  Google Scholar 

  • Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR (1977) Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci USA 74:4767–4771.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Zhang J, Liu M, Woychik NA, Inouye M (2005) Single protein production in living cells facilitated by an mRNA interferase. Mol Cell 18:253–261.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Roy R, Zheng H, Woychik N, Inouye M (2006) Bacterial bioreactors for high yield production of recombinant protein. J Biol Chem 281:37559–37565.

    Article  CAS  PubMed  Google Scholar 

  • Toone WM, Rudd KE, Friesen JD (1991) deaD, a new Escherichia coli gene encoding a presumed ATP-dependent RNA helicase, can suppress a mutation in rpsB, the gene encoding ribosomal protein S2. J Bacteriol 173:3291–3302.

    CAS  PubMed  Google Scholar 

  • Vasina JA, Baneyx F (1996) Recombinant protein expression at low temperatures under the transcriptional control of the major Escherichia coli cold shock promoter cspA. Appl Environ Microbiol 62:1444–1447.

    CAS  PubMed  Google Scholar 

  • Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93.

    CAS  PubMed  Google Scholar 

  • Wang JY, Syvanen M (1992) DNA twist as a transcriptional sensor for environmental changes. Mol Microbiol 6:1861–1866.

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Yamanaka K, Inouye M (1999) CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181:1603–1609.

    CAS  PubMed  Google Scholar 

  • Weber MH, Marahiel MA (2003) Bacterial cold shock responses. Sci Prog 86:9–75.

    Article  CAS  PubMed  Google Scholar 

  • Weber MH, Klein W, Muller L, Niess UM, Marahiel MA (2001) Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol Microbiol 39:1321–1329.

    Article  CAS  PubMed  Google Scholar 

  • Xia B, Ke H, Inouye M (2001) Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol 40:179–188.

    CAS  Google Scholar 

  • Yamanaka K, Inouye M (1997) Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J Bacteriol 179:5126–5130.

    CAS  PubMed  Google Scholar 

  • Yamanaka K, Fang L, Inouye M (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27:247–255.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka K, Zheng W, Crooke E, Wang YH, Inouye M (2001) CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol Microbiol 39:1572–1584.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M (2003) MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell 12:913–923.

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhang Y, Teh JS, Zhang J, Connell N, Rubin H, Inouye M (2006) Characterization of mRNA interferases from Mycobacterium tuberculosis. J Biol Chem 281:18638–18643.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phadtare, S., Inouye, M. (2008). Cold-Shock Proteins. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_12

Download citation

Publish with us

Policies and ethics