Skip to main content

Virus-like particles (VLP) are abundant in the aquatic biosphere, typically ranging between 105 and 108 ml−1, including in the cold environments of the deep sea, polar oceans, sea ice and high-latitude lakes. In these places, viruses play important ecological roles, e.g., equaling or surpassing grazers as agents of bacterial mortality in some Arctic waters (Steward et al. 1996; Wells and Deming 2006a). Systematic investigations of viral ecology in snow, permafrost or glaciers are only beginning, but viruses are present, preserved or even active there (e.g., Castello et al. 1999; Säwström et al. 2007b). Yet, despite the prevalence on Earth of environments ≤4°C and the high abundance of viruses in them, little is known about corresponding viral characteristics or ecology. Instead, viral studies have largely been restricted to higher temperatures convenient for experimenters but of little ecological or evolutionary relevance to many viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angly FE, Felts B, Breitbart M, and 15 others (2006) The marine viromes of four oceanic regions. PLOS Biology 4:2121–2131.

    Google Scholar 

  • Borriss M, Helmke E, Hanschke R, Schweder T (2003) Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice. Extremophiles 7:377–384.

    Article  CAS  PubMed  Google Scholar 

  • Castello JD, Rogers SO, Starmer WT, Catranis CM, Ma L, Bachand GD, Zhao Y, Smith JE (1999) Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biol 22:207–212.

    Article  Google Scholar 

  • Chen PK, Citarella RV, Salazar O, Colwell RR (1966) Properties of two marine bacteriophages. J Bacteriol 91:1136–1139.

    CAS  PubMed  Google Scholar 

  • Danovaro R, Serresi M (2000) Viral density and virus-to-bacterium ratio in deep-sea sediments of the Eastern Mediterranean. Appl Environ Microbiol 66:1857–1861.

    Article  CAS  PubMed  Google Scholar 

  • Davis BM, Waldor MK (2003) Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol 6:35–42.

    Article  CAS  PubMed  Google Scholar 

  • Delisle AL, Levin RE (1969a) Bacteriophages of psychrophilic pseudomonads. I. Host range of phage pools active against fish spoilage and fish-pathogenic pseudomonads. Antonie van Leeuwenhoek 35:307–317.

    Article  CAS  PubMed  Google Scholar 

  • Delisle AL, Levin RE (1969b) Bacteriophages of psychrophilic pseudomonads. II. Host range of phage active against Pseudomonas putrefaciens. Antonie van Leeuwenhoek 35:318–324.

    Article  CAS  PubMed  Google Scholar 

  • Delisle AL, Levin RE (1972a) Characteristics of three phages infectious for psychrophilic fishery isolates of Pseudomonas putrefaciens. Antonie van Leeuwenhoek 38:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Delisle AL, Levin RE (1972b) Effect of temperature on an obligately psychrophilic phage-host system of Pseudomonas putrefaciens. Antonie van Leeuwenhoek 38:9–15.

    Article  CAS  PubMed  Google Scholar 

  • Edwards RA, Rohwer F (2005) Viral metagenomics. Nat Rev Microbiol 3:504–510.

    Article  CAS  PubMed  Google Scholar 

  • Elder AL, Tanner FW (1927) Action of the bacteriophage on a low temperature bacterium. Proc Soc Exper Biol Med 24:645.

    Google Scholar 

  • Elder AL, Tanner FW (1928) Action of bacteriophage on psychrophilic organisms. J Infect Dis 43:403–406.

    Google Scholar 

  • Filée J, Tétart F, Suttle CA, Krisch HM (2005) Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc Natl Acad Sci USA 102:12471–12476.

    Article  PubMed  CAS  Google Scholar 

  • Gowing MM (2003) Large viruses and infected microeukaryotes in Ross Sea summer pack ice habitats. Mar Biol 142:1029–1040.

    Google Scholar 

  • Gowing MM, Riggs BE, Garrison DL, Gibson AH, Jeffries MO (2002) Large viruses in Ross Sea late autumn pack ice habitats. Mar Ecol Prog Ser 241:1–11.

    Article  Google Scholar 

  • Gowing MM, Garrison DL, Gibson AH, Krupp JM, Jeffries MO, Fritsen CH (2004) Bacterial and viral abundance in Ross Sea summer pack ice communities. Mar Ecol Prog Ser 279:3–12.

    Article  CAS  Google Scholar 

  • Greer GG (1982) Psychrotrophic bacteriophages for beef spoilage pseudomonads. J Food Protection 45:1318–1325.

    Google Scholar 

  • Greer GG (1983) Psychrotrophic Brocothrix thermosphacta bacteriophages isolated from beef. Appl Environ Microbiol 46:245–251.

    CAS  PubMed  Google Scholar 

  • Guixa-Boixereu N, Vaque D, Gasol JM, Sanchez-Camara J, Pedros-Alio C (2002) Viral distribution and activity in Antarctic waters. Deep-Sea Res II 49:827–845.

    Article  Google Scholar 

  • Johnson RM (1968) Characteristics of a marine Vibrio-bacteriophage system. J Arizona Acad Sci 5:28–33.

    Google Scholar 

  • Junge K, Krembs C, Deming J, Stierle A and Eicken H (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann Glaciol 33:304–310.

    Article  CAS  Google Scholar 

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510.

    Article  CAS  PubMed  Google Scholar 

  • Kulpa CF, Olsen RH (1971) Properties of psychrophilic bacteriophage specific for Micromonas cryophilus. Can J Microbiol 17:157–160.

    CAS  PubMed  Google Scholar 

  • Laybourn-Parry J, Marshall WA, Madan NJ (2007) Viral dynamics and patterns of lysogeny in saline Antarctic lakes. Polar Biol 30:351–358.

    Article  Google Scholar 

  • Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 101:11013–11018.

    Article  CAS  PubMed  Google Scholar 

  • Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438:86–89.

    Article  CAS  PubMed  Google Scholar 

  • Lisle JT, Priscu JC (2004) Occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica. Microb Ecol 47:427–439.

    Article  CAS  PubMed  Google Scholar 

  • Maranger R, Bird DF, Juniper SK (1994) Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom near Resolute, N.W.T., Canada. Mar Ecol Prog Ser 111:121–127.

    Article  Google Scholar 

  • Methé BA, Nelson KE, Deming JW, and 24 others (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analysis. Proc Natl Acad Sci USA 102:10913–10918.

    Article  PubMed  CAS  Google Scholar 

  • Middelboe M, Nielsen TG, Bjørnsen PK (2002) Virus and bacterial production in the North Water: In situ measurements, batch-culture experiments and characterization and distribution of a virus-host system. Deep-Sea Res II 49:5063–5079.

    Article  Google Scholar 

  • Moak M, Molineaux IJ (2004) Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol Microbiol 51:1169–1183.

    Article  CAS  PubMed  Google Scholar 

  • Moebus K (1983) Lytic and inhibition responses to bacteriophages among marine bacteria, with special reference to the origin of phage-host systems. Helgoländer Meeresunters 36:375–391.

    Article  Google Scholar 

  • Olsen RH (1967) Isolation and growth of psychrophilic bacteriophage. Appl Microbiol 15:198.

    CAS  PubMed  Google Scholar 

  • Olsen RH, Metcalf ES (1968) Conversion of mesophilic to psychrophilic bacteria. Science 162:1288–1289.

    Article  CAS  PubMed  Google Scholar 

  • Olsen RH, Metcalf ES, Todd JK (1968) Characteristics of bacteriophages attacking psychrophilic and mesophilic pseudomonads. J Virol 2:357–364.

    Article  CAS  PubMed  Google Scholar 

  • Ortmann AC, Suttle CA (2005) High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality. Deep-Sea Res I 52:1515–1527.

    Article  Google Scholar 

  • Patel TR, Jackman DM (1986) Susceptibility of psychrotrophic pseudomonads of milk origin to psychrotrophic bacteriophages. Appl Environ Microbiol 51:446–448.

    CAS  PubMed  Google Scholar 

  • Pearce D, Wilson W (2003) Viruses in Antarctic ecosystems, Antarctic Science 15:319–331.

    Article  Google Scholar 

  • Rohwer F, Segall A, Steward G, Seguritan V, Breitbart M, Wolven F, Azam F (2000) The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol Oceanogr 45:408–418.

    CAS  Google Scholar 

  • Säwström C, Anesio MA, Granéli W, Laybourn-Parry J (2007a) Seasonal viral loop dynamics in two large ultraoligotrophic Antarctic freshwater lakes. Microb Ecol 53:1–11.

    Article  PubMed  Google Scholar 

  • Säwström C, Granéli W, Laybourn-Parry J, Anesio AM (2007b) High viral infection rates in Antarctic and Arctic bacterioplankton. Environ Microbiol 9:250–255.

    Article  PubMed  Google Scholar 

  • Short CM, Suttle CA (2005) Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol 71:480–486.

    Article  CAS  PubMed  Google Scholar 

  • Sillankorva S, Oliveira R, Vieira MJ, Sutherland I, Azeredo J (2004) Pseudomonas fluorescens infection by bacteriophage S1: the influence of temperature, host growth phase and media. FEMS Microbiol Lett 241:13–20.

    Article  CAS  PubMed  Google Scholar 

  • Spencer R (1955) A marine bacteriophage. Nature 175:690–691.

    Article  CAS  PubMed  Google Scholar 

  • Spencer R (1960) Indigenous marine bacteriophages. J Bacteriol 79:614.

    CAS  PubMed  Google Scholar 

  • Spencer R (1963) Bacterial viruses in the sea. In: Oppenheimer CH (ed) Symposium on marine microbiology. Thomas, Springfield, IL, pp 350–365.

    Google Scholar 

  • Steward GF, Smith DC, Azam F (1996) Abundance and distribution of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol Prog Ser 131:287–300.

    Article  Google Scholar 

  • Steward GF, Montiel JL, Azam F (2000) Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnol Oceanogr 45:1697–1706.

    Article  Google Scholar 

  • Valentine AF, Chen PK, Colwell RR, Chapman GB (1966) Structure of a marine bacteriophage as revealed by the negative staining technique. J Bacteriol 91:819–822.

    CAS  PubMed  Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11.

    Article  PubMed  Google Scholar 

  • Weinbauer MG, Brettar I, Hofle MG (2003) Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr 48:1457–1465.

    Article  Google Scholar 

  • Wells LE (2006) Viral adaptations to life in the cold. PhD dissertation, University of Washington, Seattle, WA, USA.

    Google Scholar 

  • Wells LE, Deming JW (2006a) Significance of bacterivory and viral lysis in bottom waters of Franklin Bay, Canadian Arctic, during winter. Aquat Microb Ecol 43:209–221.

    Article  Google Scholar 

  • Wells LE, Deming JW (2006b) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45:15–29.

    Article  Google Scholar 

  • Wells LE, Deming JW (2006c) Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8:1115–1121.

    Article  PubMed  Google Scholar 

  • Wells LE, Deming JW (2006d) Effects of temperature, salinity and clay particles on inactivation and decay of cold-active marine Bacteriophage 9A. Aquat Microb Ecol 45:31–39.

    Article  Google Scholar 

  • Whitman PA, Marshall RT (1971a) Isolation of psychrophilic bacteriophage-host systems from refrigerated food products. Appl Microbiol 22:220–223.

    CAS  PubMed  Google Scholar 

  • Whitman PA, Marshall RT (1971b) Characterization of two psychrophilic Pseudomonas bacteriophages isolated from ground beef. Appl Microbiol 22:463–468.

    CAS  PubMed  Google Scholar 

  • Wiebe WJ, Liston J (1968) Isolation and characterization of a marine bacteriophage. Mar Biol 1:244–249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wells, L.E. (2008). Cold-Active Viruses. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_10

Download citation

Publish with us

Policies and ethics