Skip to main content

Some Challenging Mathematical Problems in Evolution of Dispersal and Population Dynamics

  • Chapter
Tutorials in Mathematical Biosciences IV

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1922))

We discuss the effects of dispersal (either random or biased) and spatial heterogeneity on population dynamics via reaction–advection–diffusion models. We address the question of determining optimal spatial arrangement of resources and study how advection along resource gradients affects the extinction of species. The effects of dispersal and spatial heterogeneity on the total population size of single species are carefully investigated, along with some other properties of species. These properties have important applications to invasions of rare species. Some interesting connection between the evolution of unconditional dispersal and diffusion-driven extinction is revealed. We also investigate the outcome of competition for two similar species, and show how invasion and coexistence are affected by resource utilization, inter-specific competition, and dynamics of habitat edges. In particular, interesting effects of intermediate values of dispersal rates are found. The evolution of conditional dispersal is also addressed, and we illustrate that the geometry of a habitat can play an important role in the evolution of conditional dispersal and that strong directed movement of species can induce the coexistence of competing species. If both species disperse by random diffusion and advection along environmental gradients and one species has much stronger biased movement than the other one, then at least two scenarios can occur: either both species can coexist or the “smarter” species is always the loser. These results seem to suggest that selection is against large advection along resource gradient and that an intermediate biased movement rate may evolve. Numerous open problems will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.R. Armsworth and J.E. Roughgarden, The impact of directed versus random movement on population dynamics and biodiversity patterns, Am. Nat. 165 (2005) 449-465.

    Article  Google Scholar 

  2. P.R. Armsworth and J.E. Roughgarden, Disturbance induces the contrasting evolution of reinforcement and dispersiveness in directed and random movers, Evolution 59 (2005) 2083-2096.

    Google Scholar 

  3. F. Belgacem, Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications, Pitman Research Notes in Mathematics, Vol. 368, Longman, Harlow, U.K., 1997.

    MATH  Google Scholar 

  4. F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Canadian Appl. Math. Quarterly 3 (1995) 379-397.

    MATH  MathSciNet  Google Scholar 

  5. H. Berestycki, F. Hamel, and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence, J. Math. Biol. 51 (2005) 75-113.

    Article  MATH  MathSciNet  Google Scholar 

  6. D.E. Bowler and T.G. Benten, Causes and consequences of animal dispersal strategies: relating individual behavior to spatial dynamics, Biol. Rev. 80 (2005) 205-225.

    Article  Google Scholar 

  7. K.J. Brown and S.S. Lin, On the existence of positive eigenvalue problem with indefinite weight function, J. Math. Anal. Appl. 75 (1980) 112-120.

    Article  MATH  MathSciNet  Google Scholar 

  8. R.S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: population models in a disrupted environments, Proc. Roy. Soc. Edinburgh 112A (1989) 293-318.

    MathSciNet  Google Scholar 

  9. R.S. Cantrell and C. Cosner, The effects of spatial heterogeneity in population dynamics, J. Math. Biol. 29 (1991) 315-338.

    Article  MATH  MathSciNet  Google Scholar 

  10. R.S. Cantrell and C. Cosner, Should a park be an island? SIAM J. Appl. Math. 53 (1993) 219-252.

    Article  MATH  MathSciNet  Google Scholar 

  11. R.S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol. 37 (1998) 103-145.

    Article  MATH  MathSciNet  Google Scholar 

  12. R.S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003.

    MATH  Google Scholar 

  13. R.S. Cantrell and C. Cosner, On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains, J. Diff. Eqs. 231 (2006) 768-804.

    Article  MATH  MathSciNet  Google Scholar 

  14. R.S. Cantrell, C. Cosner, D.L. DeAngelis, and V. Padrón, The ideal free distribution as an evolutionarily stable strategy, J. of Biological Dynamics, to appear.

    Google Scholar 

  15. R.S. Cantrell, C. Cosner, and W.F. Fagan, Brucellosis, botflies and brinworms: the impact of edge habitats on pathogen transmission and species extinction, J. Math. Biol. 42 (2001) 95-119.

    Article  MATH  MathSciNet  Google Scholar 

  16. R.S. Cantrell, C. Cosner, and W.F. Fagan, Competitive reversals inside ecological preserves: the role of external habitat degradation, J. Math Biol. 37 (1998) 491-533.

    Article  MATH  MathSciNet  Google Scholar 

  17. R.S. Cantrell, C. Cosner, and W.F. Fagan, Habitat edges and predator-prey interactions: effects on critical patch size, Math. Biosc. 175 (2002) 31-55.

    Article  MATH  MathSciNet  Google Scholar 

  18. R.S. Cantrell, C. Cosner, and V. Hutson, Permanence in ecological systems with diffusion, Proc. Roy. Soc. Edin. 123A (1993) 533-559.

    MathSciNet  Google Scholar 

  19. R.S. Cantrell, C. Cosner, and V. Hutson, Ecological models, permanence and spatial heterogeneity, Rocky Mount. J. Math. 26 (1996) 1-35.

    Article  MATH  MathSciNet  Google Scholar 

  20. R.S. Cantrell, C. Cosner, and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation, J. Dyn. Diff. Eqs. 16 (2004) 973-1010.

    Article  MATH  MathSciNet  Google Scholar 

  21. R.S. Cantrell, C. Cosner, and Y. Lou, Movement towards better environments and the evolution of rapid diffusion, Math Biosciences 204 (2006) 199-214.

    Article  MATH  MathSciNet  Google Scholar 

  22. R.S. Cantrell, C. Cosner, and Y. Lou, Advection mediated coexistence of competing species, Proc. Roy. Soc. Edinb. 137A (2007) 497-518.

    MathSciNet  Google Scholar 

  23. A.N. Carvalho and J.K. Hale, Large diffusion with dispersion, Nonl. Anal. 17 (1991) 1139-1151.

    Article  MATH  MathSciNet  Google Scholar 

  24. X.F. Chen, R. Hambrock, and Y. Lou, Advection-induced coexistence and extinction in a two-species competition model, preprint, 2007.

    Google Scholar 

  25. X.Y. Chen, S. Jimbo, and Y. Morita, Stabilization of vortices in the Ginzburg-Landau equation with a variable diffusion coefficient, SIAM J. Math. Anal. 29 (1998) 903-912.

    Article  MATH  MathSciNet  Google Scholar 

  26. X.F. Chen and Y. Lou, Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model, Indiana Univ. Math. J., accepted for publication, 2007.

    Google Scholar 

  27. Y.S. Choi, R. Lui, and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion, Disc. Cont. Dyn. Syst. A 9 (2003) 1193-1200.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Conti, S. Terracini, and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J. 54 (2005) 779-815.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Conti, S. Terracini, and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math. 195 (2005) 524-560.

    Article  MATH  MathSciNet  Google Scholar 

  30. E. Conway, D. Hoff, and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978) 1-16.

    Article  MATH  MathSciNet  Google Scholar 

  31. C. Cosner and Y. Lou, Does movement toward better environments always benefit a population? J. Math. Anal. Appl. 277 (2003) 489-503.

    Article  MATH  MathSciNet  Google Scholar 

  32. E.N. Dancer, Positivity of maps and applications. Topological nonlinear analysis, 303-340, Prog. Nonlinear Differential Equations Appl., 15, edited by Matzeu and Vignoli, Birkhauser, Boston, 1995.

    Google Scholar 

  33. E.N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Diff. Eqs. 114 (1994) 434-475.

    Article  MATH  MathSciNet  Google Scholar 

  34. E.N. Dancer, P. Hess, Stability of fixed points for order-preserving discrete-time dynamical systems, J. Reine Angew. Math. 419 (1991) 125-139.

    MATH  MathSciNet  Google Scholar 

  35. J. Dockery, V. Hutson, K. Mischaikow, and M. Pernarowski, The evolution of slow dispersal rates: a reaction-diffusion model, J. Math. Biol. 37 (1998) 61-83.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Doebeli, Dispersal and dynamics. Theor. Pop. Biol. 47 (1995) 82-106.

    Article  MATH  Google Scholar 

  37. C.P. Doncaster, J. Clobert, B. Doligez, L. Gustafsson, and E. Danchin, Balanced dispersal between spatially varying local populations: an alternative to the source-sink model, Am. Nat. 150 (1997) 425-445.

    Article  Google Scholar 

  38. Y. Du, Effects of a degeneracy in the competition model, Part II. Perturbation and dynamical behavior, J. Diff. Eqs. 181 (2002) 133-164.

    Article  MATH  Google Scholar 

  39. Y. Du, Realization of prescribed patterns in the competition model, J. Diff. Eqs. 193 (2003) 147-179.

    Article  MATH  Google Scholar 

  40. Y. Du, Spatial patterns for population models in a heterogeneous environment, Taiwanese J. Math. 8 (2004) 155-182.

    MATH  MathSciNet  Google Scholar 

  41. Y. Du, Bifurcation and related topics in elliptic problems. Stationary partial differential equations. Vol. II, 127–209, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005.

    Google Scholar 

  42. H. Evans, P. Kröger, and K. Kurata, On the placement of an obstacle or well to optimize the fundmental eigenvalue, SIAM J. Math. Anal. 33 (2001) 240-259.

    Article  MATH  MathSciNet  Google Scholar 

  43. W.F. Fagan, R.S. Cantrell, and C. Cosner, How habitat edges change species interactions: a synthesis of data and theory, Am. Nat. 153 (1999) 165-182.

    Article  Google Scholar 

  44. W.H. Fleming, A selection-migration in population genetics, J. Math. Biol. 2 (1975) 219-223.

    Article  MATH  MathSciNet  Google Scholar 

  45. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, 1964.

    Google Scholar 

  46. J.E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model, Proc. Roy. Soc. Edin. 127A (1997) 281-336.

    Google Scholar 

  47. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equation of Second Order, 2nd Ed., Springer-Verlag, Berlin, 1983.

    Google Scholar 

  48. S. Gourley and Y. Kuang, Two-species competition with high dispersal: the winning strategy, Math. Biosci. Eng. 2 (2005) 345-362.

    MathSciNet  Google Scholar 

  49. J.K. Hale, Large diffusivity and asymptotic behavior in parabolic systems, J. Math. Anal. Appl. 118 (1986) 455-466.

    Article  MATH  MathSciNet  Google Scholar 

  50. J. K. Hale and G. Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures. Appl. 71 (1992) 33-95.

    MATH  MathSciNet  Google Scholar 

  51. J.K. Hale and K. Sakamoto, Shadow systems and attractors in reaction-diffusion equations, Appl. Anal. 32 (1989) 287-303.

    Article  MathSciNet  Google Scholar 

  52. I. Hanski, Metapopulation Ecology, Oxford Univ. Press, Oxford, 1999.

    Google Scholar 

  53. I. Hanski and C.D. Thomas, Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol. Conservation 68 (1994) 167-180.

    Article  Google Scholar 

  54. A. Hastings, Can spatial variation alone lead to selection for dispersal? Theor. Pop. Biol. 33 (1983) 311-314.

    MathSciNet  Google Scholar 

  55. A. Hastings, Spatial heterogeneity and ecological models, Ecology 71 (1990) 426-428.

    Article  Google Scholar 

  56. P. Hess, Periodic Parabolic Boundary Value Problems and Positivity, Longman Scientific & Technical, Harlow, UK, 1991.

    MATH  Google Scholar 

  57. M.W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math. 383 (1988) 1-51.

    MATH  MathSciNet  Google Scholar 

  58. M.W. Hirsch and H.L. Smith, Asymptotically stable equilibria for monotone semiflows, Discrete Contin. Dyn. Syst. A 14 (2006) 385-398.

    MATH  MathSciNet  Google Scholar 

  59. E.E. Holmes, M.A. Lewis, J.E. Banks, and R.R. Veit, Partial differential equations in ecology: spatial interactions and population dynamics, Ecology 75 (1994) 17-29.

    Article  Google Scholar 

  60. R.D. Holt, Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution, Theor. Pop. Biol. 28 (1985) 181-208.

    Article  MATH  MathSciNet  Google Scholar 

  61. R.D. Holt and M.A. McPeek, Chaotic population dynamics favors the evolution of dispersal, Am. Nat. 148 (1996) 709-718.

    Article  Google Scholar 

  62. S. Hsu, H. Smith, and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc. 348 (1996) 4083-4094.

    Article  MATH  MathSciNet  Google Scholar 

  63. V. Hutson, J. López-Gómez, K. Mischaikow, and G. Vickers, Limit behavior for a competing species problem with diffusion, in Dynamical Systems and Applications, World Sci. Ser. Appl. Anal. 4, World Scientific, River Edge, NJ, 1995, 501-533.

    Google Scholar 

  64. V. Hutson, Y. Lou, and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Diff. Eqs. 185 (2002) 97-136.

    Article  MATH  MathSciNet  Google Scholar 

  65. V. Hutson, Y. Lou, and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Diff. Eqs. 211 (2005) 135-161.

    Article  MATH  MathSciNet  Google Scholar 

  66. V. Hutson, Y. Lou, K. Mischaikow, and P. Poláčik, Competing species near the degenerate limit, SIAM J. Math. Anal. 35 (2003) 453-491.

    Article  MATH  MathSciNet  Google Scholar 

  67. V. Hutson, S. Martinez, K. Mischaikow, and G.T. Vickers, The evolution of dispersal, J. Math. Biol. 47 (2003) 483-517.

    Article  MATH  MathSciNet  Google Scholar 

  68. V. Hutson, K. Mischaikow, and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol. 43 (2001) 501-533.

    Article  MATH  MathSciNet  Google Scholar 

  69. M. Iida, M. Mimura, and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol. 53 (2006) 617-641.

    Article  MATH  MathSciNet  Google Scholar 

  70. M. Iida, M. Tatsuya, H. Ninomiya, and E. Yanagida, Diffusion-induced extinction of a superior species in a competition system, Japan J. Iudust. Appl. Math. 15 (1998) 223-252.

    Google Scholar 

  71. J. Jiang, X. Liang, and X. Zhao, Saddle point behavior for monotone semiflows and reaction-diffusion models, J. Diff. Eqs. 203 (2004) 313-330.

    Article  MATH  MathSciNet  Google Scholar 

  72. Y. Kan-on and E. Yanagida, Existence of non-constant stable equilibria in competition-diffusion equations, Hiroshima Math. J. 23 (1993) 193-221.

    MATH  MathSciNet  Google Scholar 

  73. C.Y Kao, Y. Lou, and E. Yanagida, Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains, in preparation, 2007.

    Google Scholar 

  74. S. Kirkland, C.-K. Li, and S.J. Schreiber, On the evolution of dispersal in patchy environments, SIAM J. Appl. Math. 66 (2006) 1366-1382.

    Article  MATH  MathSciNet  Google Scholar 

  75. K. Kishimoto and H.F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Diff. Eqs. 58 (1985) 15-21.

    Article  MATH  MathSciNet  Google Scholar 

  76. K. Kurata and J. Shi, Optimal spatial harvesting strategy and symmetry-breaking, preprint, 2006.

    Google Scholar 

  77. K. Kurata, M. Shibata, and S. Sakamoto, Symmetry-breaking phenomena in an optimization problem for some nonlinear elliptic equation, Appl. Math. Optim. 50 (2004) 259-278.

    Article  MATH  MathSciNet  Google Scholar 

  78. C.L. Lehman and D. Tilman, Competition in spatial habitats. In: Tilman, D., Kareiva, P. (Eds.), Spatial Ecology. Princeton Univ. Press, Princeton, NJ, 1997, pp. 185-203.

    Google Scholar 

  79. S.A. Levin, H.C. Muller-Landau, R. Nathan, and J. Chave, The ecology and evolution of seed dispersal: a theoretical perspective, Annu. Rev. Eco. Evol. Syst. 34 (2003) 575-604.

    Article  Google Scholar 

  80. J. López-Gómez, Coexistence and meta-coexistence for competing species, Houston J. Math. 29 (2003) 483-536.

    MATH  MathSciNet  Google Scholar 

  81. J. López-Gómez and M. Molina-Meyer, Superlinear indefinite system beyond Lotka-Volterra models, J. Diff. Eqs. 221 (2006) 343-411.

    Article  MATH  Google Scholar 

  82. Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Eqs. 223 (2006) 400-426.

    Article  MATH  Google Scholar 

  83. Y. Lou, S. Martinez, and W.M. Ni, On 3 × 3 Lotka-Volterra competition systems with cross-diffusion, Dis. Cont. Dyn. Syst. A 6 (2000) 175-190.

    MATH  MathSciNet  Google Scholar 

  84. Y. Lou, S. Martinez, and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Diff. Eqs. 230 (2006) 720-742.

    Article  MATH  Google Scholar 

  85. Y. Lou and T. Nagylaki, Evolution of A Semilinear Parabolic System for Migration and Selection without dominance, J. Diff. Eqs. 225 (2006) 624-665.

    Article  MATH  MathSciNet  Google Scholar 

  86. Y. Lou, T. Nagylaki, and W.M. Ni, On diffusion-induced blowups in a cooperative model, Nonl. Anal.: Theory, Meth. Appl. 45 (2001) 329-342.

    Article  MATH  MathSciNet  Google Scholar 

  87. Y. Lou and W.M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Eqs. 131 (1996) 79-131.

    Article  MATH  MathSciNet  Google Scholar 

  88. Y. Lou and W.M. Ni, Diffusion vs. cross-diffusion: an elliptic approach, J. Diff. Eqs. 154 (1999) 157-190.

    Article  MATH  MathSciNet  Google Scholar 

  89. Y. Lou, W.M. Ni, and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion. Dis. Cont. Dyn. Syst. A 10 (2004) 435-458.

    Article  MATH  MathSciNet  Google Scholar 

  90. Y. Lou and E. Yanagida, Minimization of the principal eigenvalue with indefinite weight and applications to population dynamics, Japan J. Indus. Appl. Math 23 (2006) 275-292.

    Article  MATH  MathSciNet  Google Scholar 

  91. F. Lutscher, E. Pachepsky, and M. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev. 47 (2005) 749–772.

    Article  MATH  MathSciNet  Google Scholar 

  92. H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo 30 (1984) 645-673.

    MATH  MathSciNet  Google Scholar 

  93. H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in non-convex domains, Publ. RIMS. Kyoto Univ. 19 (1983) 1049-1079.

    Article  MATH  MathSciNet  Google Scholar 

  94. M.A. McPeek and R.D. Holt, The evolution of dispersal in spatially and temporally varying environments, Am. Nat. 140 (1992) 1010-1027.

    Article  Google Scholar 

  95. M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J. 11 (1981) 621-635.

    MATH  MathSciNet  Google Scholar 

  96. M. Mimura, S.I. Ei, and Q. Fang, Effect of domain-type on the coexistence problems in a competition-diffusion system, J. Math. Biol. 29 (1991) 219-237.

    Article  MATH  MathSciNet  Google Scholar 

  97. M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol. 9 (1980) 49-64.

    Article  MATH  MathSciNet  Google Scholar 

  98. M. Mimura, Y. Nishiura, A. Tesei, and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J. 14 (1984) 425-449.

    MATH  MathSciNet  Google Scholar 

  99. D.W. Morris, J.E. Diffendorfer, and P. Lundberg, Dispersal among habitats varying in fitness: reciprocating migration through ideal habitat selection, Oioks 107 (2004) 559-575.

    Article  Google Scholar 

  100. N. Mizoguchi, N. Ninomiya, and E. Yanagida, On the blowup induced by diffusion in nonlinear systems, J. Dyn. Diff. Eqs. 10 (1998) 619-638.

    Article  MATH  MathSciNet  Google Scholar 

  101. J.D. Murray, Mathematical Biology II. Spatial models and Biomedical Applications, Interdisciplinary Applied Mathematics, Vol. 18, 3rd ed. Springer-Verlag, New York, 2003.

    Google Scholar 

  102. C. Neuhauser, Mathematical challenges in spatial ecology, Notices Amer. Math. Soc. 48 (2001) 1304–1314.

    MATH  MathSciNet  Google Scholar 

  103. W.M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998) 9-18.

    MATH  MathSciNet  Google Scholar 

  104. W.M. Ni, Qualitative properties of solutions to elliptic problems. Stationary partial differential equations. Vol. I, 157-233, Handb. Differ. Equ., North-Holland, Amsterdam, 2004.

    Google Scholar 

  105. H. Ninomiya, Separatrices of competition-diffusion equations, J. Math. Kyoto Univ. 35 (1995) 539-567.

    MATH  MathSciNet  Google Scholar 

  106. A. Okubo and S.A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Interdisciplinary Applied Mathematics, Vol. 14, 2nd ed. Springer, Berlin, 2001.

    Google Scholar 

  107. S. Pacala and J. Roughgarden, Spatial heterogeneity and interspecific competition, Theor. Pop. Biol. 21 (1982) 92-113.

    Article  MATH  MathSciNet  Google Scholar 

  108. P. Poláčik and E. Yanagida, Existence of stable subharmonic solutions for reaction-diffusion equations, J. Diff. Eqs. 169 (2001) 255-280.

    Article  MATH  Google Scholar 

  109. A.B. Potapov and M.A. Lewis, Climate and competition: the effect of moving range boundaries on habitat invasibility, Bull. Math. Biol. 66 (2004) 975-1008.

    Article  MathSciNet  Google Scholar 

  110. M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations, 2nd ed., Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  111. G. Raugel, Dynamics of partial differential equations on thin domains, Dynamical systems (Montecatini terme, 1994), 208-315, Lecture Notes in Math. 1609, Springer, Berlin, 1995.

    Google Scholar 

  112. G. Raugel and G. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993) 503-568.

    Article  MATH  MathSciNet  Google Scholar 

  113. J.C. Saut and B. Scheurer, Remarks on a nonlinear equation arising in population genetics, Comm. Part. Diff. Eq., 23 (1978) 907-931.

    Article  MathSciNet  Google Scholar 

  114. S. Senn and P. Hess, On positive solutions of a linear elliptic boundary value problem with Neumann boundary conditions, Math. Ann. 258 (1982) 459-470.

    Article  MATH  MathSciNet  Google Scholar 

  115. N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, New York, Tokyo, 1997.

    Google Scholar 

  116. N. Shigesada, K. Kawasaki, and E. Teramoto, Spatial segregation of interacting species, J. Theo. Biol. 79 (1979) 83-99.

    Article  MathSciNet  Google Scholar 

  117. J.G. Skellam, Random dispersal in theoretical populations, Biometrika 38 (1951) 196-218.

    MATH  MathSciNet  Google Scholar 

  118. H. Smith, Monotone Dynamical Systems. Mathematical Surveys and Monographs 41. American Mathematical Society, Providence, Rhode Island, U.S.A., 1995.

    MATH  Google Scholar 

  119. J.M.J. Travis and C. Dytham, Habitat persistence, habitat availability and the evolution of dispersal, Proc. Roy. Soc. Lond. B 266 (1999) 723-728.

    Article  Google Scholar 

  120. J.M.J. Travis and D.R. French, Dispersal functions and spatial models: expanding our dispersal toolbox, Ecology Letters 3 (2000) 163-165.

    Article  Google Scholar 

  121. P. Turchin, Qualitative Analysis of Movement, Sinauer Press, Sunderland, MA, 1998.

    Google Scholar 

  122. H.F. Weinberger, An example of blowup produced by equal diffusions, J. Diff. Eqs. 154 (1999) 225-237.

    Article  MATH  MathSciNet  Google Scholar 

  123. E. Yanagida, Existence of stable stationary solutions of scalar reaction-diffusion equations in thin tubular domains, Appl. Anal. 36 (1990) 171-188.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lou, Y. (2008). Some Challenging Mathematical Problems in Evolution of Dispersal and Population Dynamics. In: Friedman, A. (eds) Tutorials in Mathematical Biosciences IV. Lecture Notes in Mathematics, vol 1922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74331-6_5

Download citation

Publish with us

Policies and ethics