Skip to main content

The Dynamics of Migration–Selection Models

  • Chapter
Tutorials in Mathematical Biosciences IV

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1922))

The evolution of the gene frequencies at a single multiallelic locus under the joint action of migration and selection is reviewed. The three models treated are in (1) discrete space and discrete time; (2) discrete space and continuous time; and (3) continuous space and continuous time. These models yield, respectively, a system of (1) nonlinear, first-order difference equations; (2) nonlinear, first-order differential equations; and (3) semilinear, parabolic partial differential equations. Among the questions discussed are the loss of a specified allele, the maintenance of a specified allele or every allele, the existence and stability of completely polymorphic equilibria, the weak- and strong-migration limits, and uniform (i.e., location-independent) selection. Many examples and unsolved problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akin, E., Hofbauer, J., 1982. Recurrence of the unfit. Math. Biosci. 61, 51–62.

    Article  MATH  MathSciNet  Google Scholar 

  2. Akin, E., Losert, V., 1984. Evolutionary dynamics of zero-sum games. J. Math. Biol. 20, 231–258.

    Article  MATH  MathSciNet  Google Scholar 

  3. Atkinson, F. V., Watterson, G. A., Moran, P. A. P., 1960. A matrix inequality. Quart. J. Math. 11, 137–140.

    Article  MATH  MathSciNet  Google Scholar 

  4. Avise, J. C., 1994. Molecular Markers, Natural History and Evolution. Chapman and Hall, New York.

    Google Scholar 

  5. Barton, N. H., Shpak, M., 2000. The effect of epistasis on the structure of hybrid zones. Genet. Res. 75, 179–198.

    Article  Google Scholar 

  6. Bulmer, M. G., 1972. Multiple niche polymorphism. Am. Nat. 106, 254–257.

    Article  Google Scholar 

  7. BĂĽrger, R., 2000. The Mathematical Theory of Selection, Recombination, and Mutation. Wiley, Chichester, UK.

    MATH  Google Scholar 

  8. Cannings, C., 1971. Natural selection at a multiallelic autosomal locus with multiple niches. J. Genet. 60, 255–259.

    Article  Google Scholar 

  9. Carvalho, A. N., Hale, J. K., 1991. Large diffusion with dispersion. Nonlin. Anal. 17, 1139–1151.

    Article  MATH  MathSciNet  Google Scholar 

  10. Conway, E., Hoff, D., Smoller, J., 1978. Large time behavior of solutions of systems of nonlinear reaction-diffusion equations. SIAM J. Appl. Math. 35, 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  11. ten Eikelder, H. M. M., 1979. A nonlinear diffusion problem arising in population genetics. Report NA-25, Delft University of Technology.

    Google Scholar 

  12. Endler, J. A., 1977. Geographical Variation, Speciation, and Clines. Princeton University Press, Princeton, NJ.

    Google Scholar 

  13. Eyland, E. A., 1971. Moran’s island model. Genetics 69, 399–403.

    MathSciNet  Google Scholar 

  14. Fife, P. C., Peletier, L. A., 1981. Clines induced by variable selection and migration. Proc. Roy. Soc. London B 214, 99–123.

    Article  Google Scholar 

  15. Fleming, W. H., 1975. A selection-migration model in population genetics. J. Math. Biol. 2, 219–233.

    Article  MATH  MathSciNet  Google Scholar 

  16. Gantmacher, F. R., 1959. The Theory of Matrices, vol. II. Chelsea, New York.

    Google Scholar 

  17. Graybill, F. A., 1969. Introduction to Matrices, with Applications in Statistics. Wadsworth, Belmont, CA.

    Google Scholar 

  18. Hadeler, K. P., 1981. Diffusion in Fisher’s population model. Rocky Mtn. J. Math. 11, 39–45.

    Article  MATH  MathSciNet  Google Scholar 

  19. Hadeler, K. P., Glas, D., 1983. Quasimonotone systems and convergence to equilibrium in a population genetic model. J. Math. Anal. Appl. 95, 297–303.

    Article  MATH  MathSciNet  Google Scholar 

  20. Haldane, J. B. S., 1948. The theory of a cline. J. Genet. 48, 277–284.

    Article  Google Scholar 

  21. Henry, D., 1981. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin.

    MATH  Google Scholar 

  22. Hirsch, M. W., 1982. Systems of differential equations which are competitive or cooperative. I: Limit sets. SIAM J. Math. Anal. 13, 167–179.

    Article  MATH  MathSciNet  Google Scholar 

  23. Hofbauer, J., Sigmund, K., 1988. The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  24. Karlin, S., 1977. Gene frequency patterns in the Levene subdivided population model. Theor. Popul. Biol. 11, 356–385.

    Article  MathSciNet  Google Scholar 

  25. Karlin, S., 1978. Theoretical aspects of multi-locus selection balance. Pp. 503–587 in: Levin, S. A. (Ed.), Studies in Mathematical Biology. Studies in Mathematics, vol. 16. Mathematical Association of America, Washington.

    Google Scholar 

  26. Karlin, S., 1982. Classification of selection-migration structures and conditions for a protected polymorphism. Evol. Biol. 14, 61–204.

    Google Scholar 

  27. Karlin, S., 1984. Mathematical models, problems, and controversies of evolutionary theory. Bull. Am. Math. Soc. 10, 221–273.

    Article  MATH  MathSciNet  Google Scholar 

  28. Karlin, S., McGregor, J., 1972a. Application of method of small parameters to multi-niche population genetic models. Theor. Popul. Biol. 3, 186–209.

    Article  MathSciNet  Google Scholar 

  29. Karlin, S., McGregor, J., 1972b. Polymorphisms for genetic and ecological systems with weak coupling. Theor. Popul. Biol. 3, 210–238.

    Article  MathSciNet  Google Scholar 

  30. Kingman, J. F. C., 1961. On an inequality in partial averages. Quart. J. Math. 12, 78–80.

    Article  MATH  MathSciNet  Google Scholar 

  31. Levene, H., 1953. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87, 311–313.

    Article  Google Scholar 

  32. Li, C. C., 1955. The stability of an equilibrium and the average fitness of a population. Am. Nat. 89, 281–295.

    Article  Google Scholar 

  33. Losert, V., Akin, E., 1983. Dynamics of games and genes: discrete versus continuous time. J. Math. Biol. 17, 241–251.

    Article  MATH  MathSciNet  Google Scholar 

  34. Lou, Y., Nagylaki, T., 2002. A semilinear parabolic system for migration and selection in population genetics. J. Diff. Eqs. 181, 388–418.

    Article  MATH  MathSciNet  Google Scholar 

  35. Lou, Y., Nagylaki, T., 2004. Evolution of a semilinear parabolic system for migration and selection in population genetics. J. Diff. Eqs. 204, 292–322.

    Article  MATH  MathSciNet  Google Scholar 

  36. Lou, Y., Nagylaki, T., 2006. Evolution of a semilinear parabolic system for migration and selection without dominance. J. Diff. Eqs. 225, 624–665.

    Article  MATH  MathSciNet  Google Scholar 

  37. Lui, R., 1986. A nonlinear integral operator arising from a model in population genetics. IV. Clines. SIAM J. Math. Anal. 17, 152–168.

    Article  MATH  MathSciNet  Google Scholar 

  38. Lyubich, Yu. I., 1992. Mathematical Structures in Population Genetics. Biomathematics, vol. 22. Springer, Berlin.

    MATH  Google Scholar 

  39. Lyubich, Yu. I., Maistrovskii, G. D., Ol’khovskii, Yu. G., 1980. Selection-induced convergence to equilibrium in a single-locus autosomal population. Probl. Inf. Transm. 16, 66–75.

    MATH  MathSciNet  Google Scholar 

  40. Maynard Smith, J., 1970. Genetic polymorphism in a varied environment. Am. Nat. 104, 487–490.

    Article  Google Scholar 

  41. Moody, M. E., 1979. Polymorphism with migration and selection. J. Math. Biol. 8, 73–109.

    Article  MATH  MathSciNet  Google Scholar 

  42. Mulholland, H. P., Smith, C. A. B., 1959. An inequality arising in genetical theory. Am. Math. Mon. 66, 673–683.

    Article  MathSciNet  Google Scholar 

  43. Nagylaki, T., 1975. Conditions for the existence of clines. Genetics 80, 595–615.

    Google Scholar 

  44. Nagylaki, T., 1976. Clines with variable migration. Genetics 83, 867–886.

    MathSciNet  Google Scholar 

  45. Nagylaki, T., 1978a. Random genetic drift in a cline. Proc. Natl. Acad. Sci. USA 75, 423–426.

    Article  MATH  Google Scholar 

  46. Nagylaki, T., 1978b. A diffusion model for geographically structured populations. J. Math. Biol. 6, 375–382.

    Article  MATH  MathSciNet  Google Scholar 

  47. Nagylaki, T., 1978c. Clines with asymmetric migration. Genetics 88, 813–827.

    Google Scholar 

  48. Nagylaki, T., 1979. Migration-selection polymorphisms in dioecious populations. J. Math. Biol. 8, 123–131.

    Article  MATH  MathSciNet  Google Scholar 

  49. Nagylaki, T., 1980. The strong-migration limit in geographically structured populations. J. Math. Biol. 9, 101–114.

    Article  MATH  MathSciNet  Google Scholar 

  50. Nagylaki, T., 1983. Evolution of a large population under gene conversion. Proc. Natl. Acad. Sci. USA 80, 5941–5945.

    Article  MATH  MathSciNet  Google Scholar 

  51. Nagylaki, T., 1989. The diffusion model for migration and selection. Pp. 55–75 in: Hastings, A. (Ed.), Some Mathematical Questions in Biology. Lecture Notes on Mathematics in the Life Sciences, vol. 20. American Mathematical Society, Providence, RI.

    Google Scholar 

  52. Nagylaki, T., 1992. Introduction to Theoretical Population Genetics. Biomathematics, vol. 21. Springer, Berlin.

    MATH  Google Scholar 

  53. Nagylaki, T., 1993. The evolution of multilocus systems under weak selection. Genetics 134, 627–647.

    Google Scholar 

  54. Nagylaki, T., 1996. The diffusion model for migration and selection in a dioecious population. J. Math. Biol. 34, 334–360.

    MATH  MathSciNet  Google Scholar 

  55. Nagylaki, T., 1997. The diffusion model for migration and selection in a plant population. J. Math. Biol. 35, 409–431.

    Article  MATH  MathSciNet  Google Scholar 

  56. Nagylaki, T., 1998. The expected number of heterozygous sites in a subdivided population. Genetics 149, 1599–1604.

    Google Scholar 

  57. Nagylaki, T., Hofbauer, J., Brunovský, P., 1999. Convergence of multilocus systems under weak epistasis or weak selection. J. Math. Biol. 38, 103–133.

    Article  MATH  MathSciNet  Google Scholar 

  58. Nagylaki, T., Lou, Y., 2001. Patterns of multiallelic polymorphism maintained by migration and selection. Theor. Popul. Biol. 59, 297–313.

    Article  MATH  Google Scholar 

  59. Nagylaki, T., Lou, Y., 2006a. Multiallelic selection polymorphism. Theor. Popul. Biol. 69, 217–229.

    Article  MATH  Google Scholar 

  60. Nagylaki, T., Lou, Y., 2006b. Evolution under the multiallelic Levene model. Theor. Popul. Biol. 70, 401–411.

    Article  MATH  Google Scholar 

  61. Nagylaki, T., Lou, Y., 2007a. Evolution under multiallelic selection-migration models. Theor. Popul. Biol. 72, 21–40.

    Article  MATH  Google Scholar 

  62. Nagylaki, T., Lou, Y., 2007b. Evolution at a multiallelic locus under migration and uniform selection. J. Math. Biol. 54, 787–796.

    Article  MATH  MathSciNet  Google Scholar 

  63. Nagylaki, T., Lucier, B., 1980. Numerical analysis of random drift in a cline. Genetics 94, 497–517.

    MathSciNet  Google Scholar 

  64. Pauwelussen, J. P., 1981. Nerve impulse propagation in a branching nerve system: A simple model. Physica D 4, 67–88.

    Article  MathSciNet  Google Scholar 

  65. Pauwelussen, J. P., Peletier, L. A., 1981. Clines in the presence of asymmetric migration. J. Math. Biol. 11, 207–233.

    Article  MATH  MathSciNet  Google Scholar 

  66. Protter, M. H., Weinberger, H. F., 1984. Maximum Principles in Differential Equations. 2nd ed. Springer, Berlin.

    MATH  Google Scholar 

  67. Prout, T., 1968. Sufficient conditions for multiple niche polymorphism. Am. Nat. 102, 493–496.

    Article  Google Scholar 

  68. Redlinger, R., 1983. Über die C 2-Kompaktheit der Bahn der Lösungen semilinearer parabolischer Systeme. Proc. Roy. Soc. Edinb. A 93, 99–103.

    MathSciNet  Google Scholar 

  69. Scheuer, P. A. G., Mandel, S. P. H., 1959. An inequality in population genetics. Heredity 13, 519–524.

    Article  Google Scholar 

  70. Senn, S., Hess, P., 1982. On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions. Math. Ann. 258, 459–470.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagylaki, T., Lou, Y. (2008). The Dynamics of Migration–Selection Models. In: Friedman, A. (eds) Tutorials in Mathematical Biosciences IV. Lecture Notes in Mathematics, vol 1922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74331-6_4

Download citation

Publish with us

Policies and ethics