Skip to main content

Reaction–Diffusion Equations and Ecological Modeling

  • Chapter
Tutorials in Mathematical Biosciences IV

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1922))

Reaction-diffusion equations are widely used as models for spatial effects in ecology. They support three important types of ecological phenomena: the existence of a minimal patch size necessary to sustain a population, the propagation of wavefronts corresponding to biological invasions, and the formation of spatial patterns in the distributions of populations in homogeneous environments. Reaction-diffusion equations can be analyzed by means of methods from the theory of partial differential equations and dynamical systems. we will discuss the derivation of reaction-diffusion models in ecology, sketch the basic aspects of their analysis, and describe some of their applications and mathematical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Alonso, F. Bartumeus, and J. Catalan. Mutual interference between predators can give rise to Turing spatial patterns. Ecology, 83: 28-34, 2002.

    Article  Google Scholar 

  2. D.A. Andow, P. Kareiva, S.A. Levin, and A. Okubo. Spread of invading organisms. Landscape Ecology, 4: 177-188, 1990.

    Article  Google Scholar 

  3. D.G. Aronson and H.F. Weinberger. Nonlinear diffusion in population genetics, combustion, and nerve impulse propagation. In Partial Differential Equations and Related Topics, Lecture Notes in Mathematics 446, pages 5-49. Springer, Berlin, 1975.

    Chapter  Google Scholar 

  4. D.G. Aronson and H.F. Weinberger. Multidimensional nonlinear diffusions arising in population genetics. Advances in Math., 30: 33-76, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  5. R.S. Cantrell and C. Cosner. Practical persistence in ecological models via comparison methods. Proc. Royal Soc. Edinburgh, 126A: 247-272, 1996.

    MathSciNet  Google Scholar 

  6. R.S. Cantrell and C. Cosner. Spatial Ecology via Reaction-Diffusion Equations. Wiley, Chichester, England, 2003.

    Book  MATH  Google Scholar 

  7. C. Cosner. Variability, vagueness, and comparison methods for ecological models. Bull. Math. Biol., 58: 207-246, 1996.

    Article  MATH  Google Scholar 

  8. C. Cosner. Comparison principles for sytems that embed in cooperative systems, with applications to Lotka-Volterra models. Dyn. Disc., Cont., and Impl. systems 3: 283-303, 1997.

    MATH  MathSciNet  Google Scholar 

  9. S. Dunbar. Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits. SIAM J. Appl. Math., 46: 1057-1078, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Durrett and S.A. Levin. The importance of being discrete (and spatial). Theor. Pop. Biol., 46: 363-394, 1994.

    Article  MATH  Google Scholar 

  11. P. Fife. Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28. Springer, Berlin, 1979.

    MATH  Google Scholar 

  12. P. Fife and J.B. McLeod. The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Rat. Mech. Anal., 65: 335-361, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  13. R.A. Fisher. The wave of advance and advantageous genes. Ann. Eugenics, 7: 353-369, 1937.

    Google Scholar 

  14. A. Friedman. Partial Differential Equations of Parabolic Type. Prentice Hall, Englewood Cliffs, New Jersey, 1964.

    MATH  Google Scholar 

  15. A. Friedman. Partial Differential Equations. Krieger, New York, 1976.

    Google Scholar 

  16. P. Grindrod. The Theory and Applications of Reaction-Diffusion Equations: Patterns and Waves, 2nd edition. Oxford University Press, Oxford, 1996.

    MATH  Google Scholar 

  17. A. Hastings, K. Cuddington, K.F. Davies, C.J. Dugaw, E. Elmenderf, A. Freestone, S. Harrison, M. Holland, J. Lambrinos, U. Malvadkar, B.A. Melbourne, K. Moore, C. Taylor, and D. Thompson. The spatial spread of invasions: new developments in theory and evidence. Ecology Letters, 8: 91-101, 2005.

    Article  Google Scholar 

  18. D. Henry. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840, Springer, Berlin, 1981.

    MATH  Google Scholar 

  19. P. Hess. Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics 247, Longman, Harlow, Essex, UK, 1991.

    Google Scholar 

  20. Y. Hosono. The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model. Bull. Math. Biol., 60: 435-448, 1998.

    Article  MATH  Google Scholar 

  21. H. Kierstead and L.B. Slobodkin. The size of water masses containing plankton bloom. J. Marine Research, 12: 141-147, 1953.

    Google Scholar 

  22. M. Kot. Elements of Mathematical Ecology. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  23. M. Kot and W.M. Schaeffer. Discrete-time growth-dispersal models. Math. Biosci., 80: 109-136, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Kot, M.A. Lewis, and P. van den Driessche. Dispersal data and the spread of invading organisms. Ecology, 77: 2027-2042, 1996.

    Article  Google Scholar 

  25. A. Leung. Systems of Nonlinear Partial Differential Equations. Kluwer Academic, Boston, 1989.

    MATH  Google Scholar 

  26. S.A. Levin and L.A. Segel. Pattern generation in space and aspect. SIAM Review, 27: 45-67, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  27. M.A. Lewis. Variability, patchiness, and jump dispersal in the spread of an invading population. In D. Tilman and P. Kareiva, editors, Spatial Ecology, pages 46-69. Princeton University Press, Princeton, New Jersey, 1997.

    Google Scholar 

  28. M.A. Lewis, B.T. Li, and H.E. Weinberger. Spreading speed and linear determinacy for two-species competition models. J. Math. Biol., 45: 219-233, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Matano. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. Kyoto, 15: 401-454, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Matano and M. Mimura. Pattern formation in competition-diffusion systems in non convex domains. Publ. Res. Inst. Math. Sci. Kyoto, 19: 1049-1079, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  31. R.C. McOwen. Partial Differential Equations: Methods and Applications, 2nd edition Pearson Education, Upper Saddle River, New Jersey, 2003.

    Google Scholar 

  32. A.B. Medvinski, S.V. Petrovskii, I.A. Tikhonova, H. Malchow, and B.-L. Li. Spatiotemporal complexity of plankton and fish dynamics. SIAM Review, 44: 311-370, 2002.

    Article  MathSciNet  Google Scholar 

  33. M. Mimura and J.D. Murray. On a diffusive predator-prey model that exhibits patchiness. J. Theor. Biol., 75: 249-262, 1978.

    Article  MathSciNet  Google Scholar 

  34. J.D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, Berlin, 2003.

    MATH  Google Scholar 

  35. A. Okubo and S.A. Levin. Diffusion and Ecological Problems, 2nd edition. Springer, Berlin, 2001.

    Google Scholar 

  36. A. Okubo, P.K. Maini, M.H. Williamson, and J.D. Murray. On the spatial spread of the grey squirrel in Britain. Proc. Royal Soc. London, B238: 113-125, 1989.

    Article  Google Scholar 

  37. M.R. Owen and M.A. Lewis. How predation can slow, stop, or reverse a prey invasion. Bull. Math. Biol., 63: 655-684, 2001.

    Article  Google Scholar 

  38. C.V. Pao. Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, 1992.

    MATH  Google Scholar 

  39. M. Pascual. Diffusion-induced chaos in a spatial predator-prey system. Proc. Royal Soc. London, B251: 1-7, 1993.

    Article  Google Scholar 

  40. A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin, 1983.

    MATH  Google Scholar 

  41. M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

    Google Scholar 

  42. L.A. Segel and J.L. Jackson. Dissipative Structure: an explanation and an ecological example. J. Theor. Biol. 37: 545-559, 1972.

    Article  Google Scholar 

  43. N. Shigesada and K. Kawasaki. Biological Invasions: Theory and Practice. Oxford University Press, Oxford, 1997.

    Google Scholar 

  44. J.G. Skellam. Random dispersal in theoretical populations. Biometrika, 38: 196-218, 1951.

    MATH  MathSciNet  Google Scholar 

  45. H.L. Smith. Monotone Dynamical Systems. Mathematical Surveys and Monographs 41. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  46. J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer, Berlin, 1982.

    Google Scholar 

  47. W.A. Strauss. Partial Differential Equations. Wiley, New York, 1992.

    MATH  Google Scholar 

  48. P. Turchin. Quantitative Analysis of Movement. Sinauer, Sunderland, Massachusetts, 1998.

    Google Scholar 

  49. A.M. Turing. The chemical basis for morphogenesis. Phil. Trans. Royal Soc. London B237: 37-72, 1952.

    Article  Google Scholar 

  50. P. Yodzis. Introduction to Theoretical Ecology. Harper and Row, New York, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cosner, C. (2008). Reaction–Diffusion Equations and Ecological Modeling. In: Friedman, A. (eds) Tutorials in Mathematical Biosciences IV. Lecture Notes in Mathematics, vol 1922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74331-6_3

Download citation

Publish with us

Policies and ethics