Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACI committee 211.1.81 (1984) Standard practice for selecting proportions for normal, heavy weight and mass concrete. ACI Manual of Concrete Practice.

    Google Scholar 

  • Andrade C (1986) Effect of fly ash in concrete on the corrosion of steel reinforcement. ACI SP – 91: 609–620.

    Google Scholar 

  • ASTM C 1113 (1990), Test method for thermal conductivity of refractories by hot wire (Platinum Resistance Thermometer Technique).

    Google Scholar 

  • ASTM C 618 (1993) Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete, Annual Book of ASTM Standards, Philadelphia, USA.

    Google Scholar 

  • Atis CD (2002) Heat evolution of high-volume fly ash concrete. Cement and Concrete Research 32: 751–756.

    Article  Google Scholar 

  • Atis CD (2005) Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition. Cement and Concrete Research 35: 1112–1121.

    Article  Google Scholar 

  • Attiogbe EK, Rizkalla SH (1988) Response of concrete to sulfuric acid attack. ACI Materials Journal 84 (6): 481–488.

    Google Scholar 

  • Aydin S, Yazici H, Yiiter H, Baradan B (2007) Sulfuric acid resistance of high-volume fly ash concrete. Building and Environment 42: 717–721.

    Article  Google Scholar 

  • Bamforth PB (1980) In-situ measurement of the effect of partial cement replacement using either fly ash or ground granulated blast furnace slag on the performance of mass concrete. Proceedings, Institution of Civil Engineering 69: 777–800.

    Google Scholar 

  • Bilodeau A, Malhotra VM (1992) Concrete incorporating high volumes of ASTM Class F fly ashes: mechanical properties and resistance to deicing salt scaling and to chloride-ion penetration. ACI Special Publication SP-132: 319–349.

    Google Scholar 

  • Brown JH. (1982) The strength and workability of concrete with PFA substitution. Proceedings International Symposium on the Use of PFA in Concrete, University of Leeds, England, pp. 151–161.

    Google Scholar 

  • Burns JS, Guarnaschelli C, McAskill, J (1982) No controlling the effect of carbon in fly ash on air entrainment. Proceedings, 6th International Symposium on Fly Ash Utilization, Reno, Nevada, DOE/METC, pp. 294–313.

    Google Scholar 

  • Buttler FG, Dector MH Smith GR (1983) Studies on the desiccation and carbonation of systems containing Portland cement and fly ash. ACI SP – 79 (1): 367–383.

    Google Scholar 

  • Cabrera JG, Lynsdale CJ (1988) A new gas permeameter for measuring the permeability of mortar and concrete. Magazine of Concrete Research 40: 77–82.

    Google Scholar 

  • Carette GG, Malhotra VM (1984) Characterization of Canadian fly ashes and their performance in concrete. Division Report MRP/MSL 84 - 137, CANMET, Energy, Mines and Resources, Canada.

    Google Scholar 

  • Carette GG, Malhotra VM (1987) Characterization of Canadian fly ashes and their relative performance in concrete. Canadian Journal of Civil Engineering 14: 267–282.

    Google Scholar 

  • Central Electricity Generating Board (CEGB) (1967) PFA data book. London.

    Google Scholar 

  • Chalee W, Teekavanit M, Kiattikomol K, Siripanichgorn A, Jaturapitakkul C (2007) Effect of W/C ratio on covering depth of fly ash concrete in marine environment. Construction and Building Materials 21: 965–971.

    Article  Google Scholar 

  • Chindaprasirt P, Chotithanorm C, Cao, HT, Sirivivatnanon (2007) Influence of fly ash fineness on the chloride penetration of concrete. Construction and Building Materials 21: 356–361.

    Article  Google Scholar 

  • Compton FR, Macinnis (1952) Field trial of fly ash concretes. Ontario Hydro Research News, pp. 18–21.

    Google Scholar 

  • Cook JE (1982) Research and application of high strength concrete using class C fly ash. Concrete International 4: 72–80.

    Google Scholar 

  • Crow RD, Dunstan ER (1981) Properties of fly ash concrete. Proceedings of Symposium on Fly Ash Incorporation in Hydrated Cement Systems, Edited by Sidney Diamond, materials research society, Boston, pp. 214–225.

    Google Scholar 

  • Demirboga R (2007) Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment 42: 2467–2471.

    Article  Google Scholar 

  • Demirboga R, Türkmen, I, Karakoc MB (2007) Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Building and Environment 42: 349–354.

    Article  Google Scholar 

  • Diamond S (1981) Effects of two Danish fly ashes on alkali contents of cement fly ash pastes. Cement and Concrete Research 11: 383–394.

    Article  MathSciNet  Google Scholar 

  • Diamond S (1985) Selection and use of fly ash for high way concrete. Joint Highway Research Project, Purdue University, Indiana.

    Google Scholar 

  • Dunstan ER (1976) Performance of lignite and sub-bituminous fly ash in concrete. A progress Report REC - ERC - 76 - 1, USBR.

    Google Scholar 

  • Dunstan ER (1980) A possible method for identifying fly ashes that - will improve sulfate resistance of concretes. ASTM Cement, Concrete and Aggregate 2: 20–30.

    Google Scholar 

  • Dunstan ER (1981) The effect of fly ash on concrete alkali-aggregate reaction. ASTM Cement, Concrete and Aggregate 3: 10–104.

    Google Scholar 

  • Electric Power Research Institute (1987) Classification of fly ash for use in cement and concrete. CS-5116, Project 2422-10.

    Google Scholar 

  • Ellis WEJr, Rigs EH, Butler WB (1991) Comparative results of utilization of fly ash, silica fume and GGBS in reducing the chloride permeability of concrete. Proceedings of the 2nd CANMET/ACI International Conference on Durability of Concrete, Montreal, Canada, ACI SP-126 (1): 443–457.

    Google Scholar 

  • Erdogdu K., Türker P (1998) Effects of fly ash particle size on strength of Portland cement fly ash mortars. Cement and Concrete Research 28 (9): 1217–1222.

    Article  Google Scholar 

  • Fay KFV, Pierce JS (1989) Sulfate Resistance of concretes with various fly ashes. ASTM Standardisation News, pp. 32–37.

    Google Scholar 

  • Gebauer J (1982) Source observations on the carbonation of fly ash concrete. Silicate Industrials 6: 155–159.

    Google Scholar 

  • Gebler SH, Klieger P (1983) Effect of fly ash on the air void stability of concrete. Proceedings of the 1st International Conference on the Use of Fly Ash, Silica Fume, Slag and Other Mineral by Products in Concrete. ACI SP 79: 103–142.

    Google Scholar 

  • Ghafoori N, Diawara H (1999) Abrasion resistance of fine aggregate replaced silica fume concrete. ACI Materials Journal 96 (5): 559–567.

    Google Scholar 

  • Ghosh RS, Timusk J (1981) Creep of fly ash Concrete. ACI Journal 78 (5): 351–387.

    Google Scholar 

  • Gifford PM, Langan BW, Day RL, Joshi RC, Ward MA (1987) A study of fly ash concrete in curb and gutter construction under various laboratory and field curing regimes. Canadian Journal of Civil Engineering 14 (5): 614–620.

    Article  Google Scholar 

  • Gopalan MK (1996) Sorptivity of fly ash concretes. Cement and Concrete Research 26 (8): 1189–1197.

    Article  Google Scholar 

  • Haque MN, Langan BW, Ward MA (1988) High fly ash concretes. ACI Materials 8 (1): 54–60.

    Google Scholar 

  • Ho DWS, Lewis RK (1983) Carbonation of concrete incorporating fly ash or a chemical admixture. ACI SP – 79: 333–346.

    Google Scholar 

  • Hobbs DW (1981) The Alkali silica reaction: A model for predicting expansion in mortar. Magazine of Concrete Research 33:208–220.

    Article  MathSciNet  Google Scholar 

  • Hobbs DW (1983) Influence of fly ash on the workability and early strength of concrete. Proceedings of the 1st International Conference on the Use of Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete, ACI SP 79: 289–306.

    Google Scholar 

  • Idorn GM (1991) Concrete durability and resource economy. Concrete International 13 (7): 18–23.

    Google Scholar 

  • IS: 1237 (1980) Method for testing abrasion resistance of concrete, Bureau of Indian Standards (BIS), New Delhi, India.

    Google Scholar 

  • Joshi RC (1970) Experimental production of synthetic fly ash from kaolinite. MS Thesis, Iowa State University.

    Google Scholar 

  • Joshi RC (1979) Sources of pozzolanic activity in fly ashes – A Critical Review. Proceedings of the 5th International Fly Ash Utilization Symposium, Atlanta, Georgia, USA, pp. 610–623.

    Google Scholar 

  • Joshi RC (1987) Effect of a sub-bituminous fly ash and its properties on sulfate resistance of sand cement mortars. Journal of Durability of Building Materials 4: 271–286.

    Google Scholar 

  • Joshi RC, Lam DT (1987) Sources of self-hardening properties of fly ashes. Materials Research Proceedings, Vol. 86, MRS. Pittsburgh, USA, pp. 183–184.

    Google Scholar 

  • Joshi RC, Lohtia RP (1993) Effects of premature freezing temperatures on compressive strength, elasticity and microstructure of high volume fly ash concrete. Third Canadian Symposium on Cement and Concrete, Ottawa, Canada.

    Google Scholar 

  • Joshi RC, Lohtia RP, Salam MA (1993) High strength concrete with high volumes of Canadian sub-bituminous coal ash. Third International Symposium on Utilization of High Strength Concrete, Lillachammer, Norway.

    Google Scholar 

  • Joshi RC, Lohtia RP, Salam MA (1994) Some durability related properties of concretes incorporating high volumes of sub-bituminous coal fly ash. Proceedings, 3rd CANMET/ACI International Conference on Durability of Concrete, Nice, France, pp. 447–464.

    Google Scholar 

  • Kasai Y, Matsui I, Fukushima U, Kamohara, H (1983) Air permeability of blended cement mortars. Proceedings of the 1st International Conference on the Use of Fly Ash, Silica-Fume, Slag and Other Mineral By-Products in Concrete. ACI SP 29: 435–451.

    Google Scholar 

  • Lane RO Best GF (1982) Properties and use of fly ash in Portland cement concrete. Concrete International 4: 81–92.

    Google Scholar 

  • Langan BV, Joshi RC, Ward MA (1990) Strength and durability of concrete containing 50% Portland cement replacement by fly ash and other materials. Canadian Journal of Civil Engineering 17 (1): 19–27.

    Google Scholar 

  • Langley WS, Carette GG, Malhotra VM (1989) Structural concrete incorporating high volumes of ASTM class F fly ash. ACI Materials Journal 86 (5): 507–514.

    Google Scholar 

  • Larsen TD (1985) Use of fly ash in structural concrete in Florida, Presented at fly ash in high way construction seminar, Altanta, Georgia.

    Google Scholar 

  • Liu TC (1981) Abrasion resistance of concrete. ACI Journal Proceedings 78 (5): 341–350.

    Google Scholar 

  • Lohtia RP, Nautiyal BD, Jain OP (1976) Creep of fly ash concrete. ACI Journal 73: 469–472.

    Google Scholar 

  • Lohtia RP, Nautiyal BD, Jain KK, Jain OP (1977) Compressive strength of plain and fly ash concrete by non-destructive testing methods. Journal of the Institution of Engineers (India) 58 a – 1: 40–45.

    Google Scholar 

  • Malhotra VM, Caratte GG, Bilodeau A, Sivasundram V (1990) Some aspects of durability of high volume ASTM class F (Low calcium) fly ash concrete. Mineral Sciences Laboratories, Division Report MSL - 90 - 20 (OP & J).

    Google Scholar 

  • Malhotra VM, Carette GG, Bremmer TW (1982) Durability of concrete containing granulated blast furnace slag or fly ash or both in Marine environment, Report 80 - 18E, CANMET, EMR, Canada.

    Google Scholar 

  • McCarthy GJ, Johansen DM, Steinwand SJ (1988) X-ray diffraction analysis of fly ash. Vol. 31, Barrett CS et al. (Eds.), Advances in x-Ray Analysis, Plenum Press, New York.

    Google Scholar 

  • Mehta PK (1983) Pozzolanic and cementitious by-products as mineral admixtures for concrete – a critical review. Proceedings of the 1st International Conference on the Use of Fly Ash, Slag and Silica Fume in Concrete, Montebello, Canada, ACI SP 79: 1–46.

    Google Scholar 

  • Mehta PK (1988) Standard specifications for mineral admixtures – an overview. ACI SP 91: 637–658.

    Google Scholar 

  • Mehta PK (1993) Sulfate Attack on concrete – a critical review. Materials science of concrete – Part: III, Skalny J (Ed.), American Ceramic Society, pp. 105–130.

    Google Scholar 

  • Mehta PK (1994) Symposium on Durability of Concrete. Khayat IH, Aitcin PC (Eds.), Nice, France, pp. 99–118

    Google Scholar 

  • Mulenga DM, Stark J, Nobst P (1999) Praxisnahes Prüfverfahren zum Sulfatwiderstand von Beton und Möotel mit und ohne Flugasche. In: Beiträge zum DafStb—-Forschungskolloquium, Bauhaus-Universität Weimar 37: 197–207.

    Google Scholar 

  • Mulenga DM, Stark J, Nobst P (2003) Thaumasite formation in concrete and mortars containing fly ash. Cement & Concrete Composites 25: 907–912.

    Article  Google Scholar 

  • Munday JGL, Ong LT, Wong LG, Dhir RK (1982) Load independent movements in OPC/PFA concrete. Cabreva JA, Cusens RR (Eds.), Proceedings, International Symposium on the Use of PFA in Concrete, University of Leeds, England, pp. 243–246.

    Google Scholar 

  • Muralidharan S, Saraswathy V, Thangavel K, Srinivasan S. (2000) Competitive role of inhibitive and aggressive ions in the corrosion of steel in concrete. Journal of Applied Electrochem 30: 1255–1259.

    Article  Google Scholar 

  • Nagataki S, Ohga H, Kim EK (1986) Effect of curing conditions on the carbonation of concrete with fly ash and the corrosion of reinforcement in long term basic. ACI SP 91: 521–540.

    Google Scholar 

  • Naik TR, Singh SS, Hossain MM (1994) Permeability of concrete containing large amounts of fly ash. Cement and Concrete Research 24 (5): 913–922.

    Article  Google Scholar 

  • Naik TR, Singh SS, Hossain MM (1995) Abrasion resistance of high-strength concrete made with class C fly ash. ACI Materials Journal 92 (6): 649–659.

    Google Scholar 

  • Naik TR, Singh SS, Ramme BW (1998) Mechanical properties and durability of concrete made with blended fly ash. ACI Materials Journal 95 (4): 454–462.

    Google Scholar 

  • Nanni A (1989) Abrasion resistance of roller-compacted concrete. ACI Materials Journal 86 (53): 559–565.

    Google Scholar 

  • Nasser KW, Al-Manasser AA (1986) Shrinkage and creep of concrete containing 50 percent lignite fly ash at different stress – strength ratios. Proceedings of the 2nd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP 91 (1): 433–448.

    Google Scholar 

  • Nasser KW, Marzouk, HM (1983) Properties of concrete made with sulfate resisting cement and fly ash. Proceedings First International Conference on the Use of Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete, ACI SP 79: 383–395.

    Google Scholar 

  • Neville AM (1973) Properties of concrete (2nd Edition). John Wiley, New York, 382 p.

    Google Scholar 

  • Oberholster RE, Westra WB (1981) The effectiveness of mineral admixtures in reducing expansion due to alkali-aggregate reaction with malmesbury group aggregate. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town, South Africa.

    Google Scholar 

  • Owens PL (1979) Fly ash and its usage in concrete. Concrete Society Journal, England 13 (7): 21–26.

    Google Scholar 

  • Ozer B, Ozkul MH (2004) The influence of initial water curing on the strength development of ordinary Portland and pozzolanic cement concretes. Cement and Concrete Research 34: 13–8.

    Article  Google Scholar 

  • Pepper L, Mather B (1959) Effectiveness of mineral admixtures in preventing excessive expansion of concrete due to alkali-aggregate reaction. Proceedings, ASTM 59: 1178–1202.

    Google Scholar 

  • Perry C, Day RL, Joshi RC, Langan BW, Gillot JE (1987) The effectiveness of twelve Canadian fly ashes in suppressing expansion due to alkali-silica reaction. Proceedings of the 7th International Conference on Alkali-Aggregate Reaction, Ottawa, pp. 93–97.

    Google Scholar 

  • Raba, F Jr, Smith SL, Mearing M (1981) Sub bituminous fly ash utilization in concrete. Diamond S (Ed.), Proceedings Symposium on Fly Ash Incorporation on Hyderated Cement Systems, Materials Research Society, Boston, pp. 296–306

    Google Scholar 

  • Ramakrishan V, Coyle WV, Brown J, Tluskus A, Benkataramanyam P (1981) Performance characteristics of concrete containing fly ash. Diamond S (Ed.), Proceedings Symposium on Fly Ash Incorporation in Hydrated Cement Systems, Materials Research Society, Boston, pp. 233–243.

    Google Scholar 

  • Ravina D (1981) Efficient utilization of coarse and fine fly ash in precast concrete by incorporating thermal curing. ACI Journal 78 (3): 194–200.

    Google Scholar 

  • RILEM CP113 (1984) Absorption of water by immersion under vacuum. Material Structures Research Testing 101: 393–394.

    Google Scholar 

  • Rodway LE, Fedriko, WM (1989) Superplasticized high volume fly ash structural concrete. ACI SP 114 (1): 98–112.

    Google Scholar 

  • Roy DM, Arjunan P, Silsbee MR (2001) Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cement and Concrete Research 31 (12): 1809–1813.

    Article  Google Scholar 

  • Saraswathy V, Muralidharan S, Thangavel K, Srinivasan S (2003) Influence of activated fly ash on corrosion-resistance and strength of concrete. Cement and Concrete Composites 25: 673–680.

    Article  Google Scholar 

  • Schiepl P, Raupach M (1992) Influence of the type of cement on the corrosion behavior of steel in concrete. Nineth International Congress on the Chemistry of Cement, New Delhi, pp. 296–301.

    Google Scholar 

  • Schiepl P, Hardtle R (1994) Relationship between durability and fore structure properties of concretes containing fly ash. Khayat IH, Aitcin PC, (Eds.), P.K. Mehta Symposium on Durability of Concrete, Nice, France, pp. 99–118.

    Google Scholar 

  • Shafiq N, Cabrera JG (2004) Effects of initial curing condition on the fluid transport properties in OPC and fly ash blended cement concrete. Cement & Concrete Composites 26: 381–387.

    Article  Google Scholar 

  • Short NR, Page CL (1982) The diffusion of chloride ions through Portland and blended cement pastes. Silicate Industrials 237–240.

    Google Scholar 

  • Siddique R (2003a) Effect of fine aggregate replacement with class F fly ash on the mechanical properties of concrete. Cement and Concrete Research 33 (4): 539–547.

    Article  Google Scholar 

  • Siddique R (2003b) Effect of fine aggregate replacement with class F fly ash on the abrasion resistance of concrete. Cement and Concrete Research 33 (11): 877–1881.

    Article  Google Scholar 

  • Sivasundram V, Carette GG, Malhotra VM (1989) Properties of concrete incorporating low quantity of cement and high volumes of low-calcium fly ash. Proceedings of the 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP 114: 45–71.

    Google Scholar 

  • Sivasundram V, Carette GG, Malhotra VM (1990) Selected properties of high volume fly ash concretes. ACI Concrete International, vol. 12, no. 10. 12 (10): 47–50.

    Google Scholar 

  • Stanton TE (1942) Expansion of concrete through reaction between cement and aggregate. Transactions ASCE Part 2: 68–85.

    Google Scholar 

  • Swamy RN, Mahmud HB (1986) Mix proportions and strength characteristics of concrete containing 50% low-calcium fly ash. Proceedings of the 2nd CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP 91 (1): 413–432.

    Google Scholar 

  • Tattersall GH, Benfill PFG (1983) The Rheology of Fresh concrete. Pitman, London.

    Google Scholar 

  • Termkhajornkit P, Nawa T, Kurumisawa K (2006) Effect of water curing conditions on the hydration degree and compressive strengths of fly ash-cement paste. Cement & Concrete Composites 28: 781–789.

    Article  Google Scholar 

  • Thomas MDA, Matthews JD (1992) The permeability of fly ash concrete. Materials and Structures 25 (151): 388–396.

    Article  Google Scholar 

  • Tikalsky PJ, Carrasquillo PM, Carrasquillo RL (1988) Strength and durability considerations affecting mix proportions of concrete containing fly ash. ACI Materials Journal 85 (6): 505–511.

    Google Scholar 

  • Virtanen J (1983) Freeze-thaw resistance of concrete containing blast furnace slag, fly ash or condensed silica fume. Proceedings of the 1st International Conference on the Use of Fly Ash, Silica Fume, Slag and Other Mineral By-Products, ACI SP 79: 923–942.

    Google Scholar 

  • William JT, Owens PL (1982) The implications of a selected grade of United Kingdom pulverized fuel ash on the engineering design and use in structural concrete. Proceedings of the International Symposium on the Use of PFA in Concrete, University of Leeds, England, pp. 301–313.

    Google Scholar 

  • Wittekindt W (1960) Sulfatbeständige Zemente und ihre Prüfung. Zement-Kalk-Gips 13 (12): 565–72.

    Google Scholar 

  • Yazici H, Aydin S, Yigiter H, Baradan B (2005) Effect of steam curing on class C high-volume fly ash concrete mixtures. Cement and Concrete Research 35: 1122–1127.

    Article  Google Scholar 

  • Yuan RL, Cook JE (1983) Study of class C fly ash in concrete. Proceeding of the 1st International Conference on the Use of Fly Ash, Silica Fume, Slag, and Other Mineral By-Products in Concrete, ACI SP 79: 307–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siddique, R. (2008). Coal Fly Ash. In: Waste Materials and By-Products in Concrete. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74294-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74294-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74293-7

  • Online ISBN: 978-3-540-74294-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics