Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Akhras NM (2006) Durability of metakaolin to sulfate attack. Cement and Concrete Research 36 (9): 1727–1734.

    Article  Google Scholar 

  • Alonso S, Palomo A (2001a) Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Materials Letters 47: 55–62.

    Article  Google Scholar 

  • Alonso S, Palomo A (2001b) Calorimetric study of alkaline activation of calcium hydroxide + metakaolin solid mixtures. Cement and Concrete Research 31: 25–30.

    Article  Google Scholar 

  • Ambroise J, Maximilien S, Pera J (1994) Properties of metakaolin blended cements. Advanced Cement Based Materials 1: 161–168.

    Article  Google Scholar 

  • Ambroise J, Murat M, Pera J (1986) Investigations on synthetic binders obtained by middle-temperature thermal dissociation of clay minerals. Silicates Industries 7 (8): 99–107.

    Google Scholar 

  • Asbridge AH, Chadbourn GA, Page CL (2001) Effects of metakaolin and the interfacial transition zone on the diffusion of chloride ions through cement mortars. Cement and Concrete Research 31: 1567–1572.

    Article  Google Scholar 

  • Asbridge AH, Page CL, Page MM (2002) Effects of metakaolin, water/binder ratio and interfacial transition zones on the micro hardness of cement mortars. Cement and Concrete Research 32: 1365–1369.

    Article  Google Scholar 

  • Asbridge AH, Walters GV, Jones TR (1994) Ternary blended concretes- OPC/GGBFS/metakaolin. Denmark: Concrete Across Borders, pp. 547–557.

    Google Scholar 

  • Badogiannis E, Kakali G, Dimopoulou G, Chaniotakis E, Tsivilis S (2005) Metakaolin as a main cement constituent: Exploitation of poor Greek kaolins. Cement & Concrete Composites 27: 197–203.

    Article  Google Scholar 

  • Badogiannis E, Papadakis VG, Chaniotakis E, Tsivilis S (2004) Exploitation of poor Greek kaolins: strength development of metakaolin concrete and evaluation by means of k-value. Cement and Concrete Research 34: 1035–1041.

    Article  Google Scholar 

  • Bai J, Wild S (2002) Investigation of the temperature change and heat evolution of mortar incorporating PFA and metakaolin. Cement & Concrete Composites 24: 201–209.

    Article  Google Scholar 

  • Bai J, Wild S, Sabir BB (2002) Sorptivity and strength of air-cured and water-cured PC–PFA–MK concrete and the influence of binder composition on carbonation depth. Cement and Concrete Research 32: 1813–1821.

    Article  Google Scholar 

  • Bai J, Wild S, Sabir BB (2003b) Chloride ingress and strength loss in concrete with different PC–PFA–MK binder compositions exposed to synthetic seawater. Cement and Concrete Research 33: 353–362.

    Article  Google Scholar 

  • Bai J, Wild S, Ware JA, Sabir BB (2003a) Using neural networks to predict workability of concrete incorporating metakaolin and fly ash. Advances in Engineering Software 34: 663–669.

    Article  Google Scholar 

  • Batis G, Pantazopoulou P, Tsivilis S, Badogiannis E (2005) The effect of metakaolin on the corrosion behavior of cement mortars. Cement & Concrete Composites 27: 125–130.

    Article  Google Scholar 

  • Boddy A, Hooton RD, Gruber KA (2001) Long-term testing of the chloride-penetration resistance of concrete containing high-reactivity metakaolin. Cement and Concrete Research 31 (5): 759–765.

    Article  Google Scholar 

  • Bredy P, Chabannet M, Pera J (1989) Microstructural and porosity of metakaolin blended cements. Material Research Society Symposium 137: 431–436.

    Google Scholar 

  • Brooks JJ, Johari MMA (2001) Effect of metakaolin on creep and shrinkage of concrete. Cement & Concrete Composites 23: 495–502.

    Article  Google Scholar 

  • Cabrera JG, Nwaubani SO (1998) The microstructure and chloride ion diffusion characteristics of cements containing metakaolin and fly ash. In: V.M. Malhotra (Eds.), Sixth CANMET/ACI/JCI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Bangkok, Thailand, 1: 385–400.

    Google Scholar 

  • Cabrera J, Rojas MF (2001) Mechanism of hydration of the metakaolin-lime-water system. Cement and Concrete Research 31: 177–182.

    Article  Google Scholar 

  • Changling H, Osbaeck B, Makovicky E (1995) Pozzolanic reaction of six principal clay minerals: Activation reactivity assessments and technological effects. Cement and Concrete Research 25 (8): 1691–1702.

    Article  Google Scholar 

  • Coleman NJ, Page CL (1997) Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin. Cement and Concrete Research 27 (1): 147–154.

    Article  Google Scholar 

  • Courard L, Darimont A, Schouterden M, Ferauche F, Willem X, Degeimbre R. (2003) Durability of mortars modified with metakaolin. Cement and Concrete Research 33: 473–1479.

    Article  Google Scholar 

  • Curcio F, DeAngelis BA (1998) Dilatant behavior of superplasticized cement pastes containing metakaolin. Cement and Concrete Research 28 (5): 629–634.

    Article  Google Scholar 

  • Curcio F, Deangelis BA, Pagliolico S (1998) Metakaolin as pozzolanic micro filler for high-performance mortars. Cement and Concrete Research 28 (6): 803–809.

    Article  Google Scholar 

  • Dias WPS (2000) Reduction of concrete sorptivity with age through carbonation. Cement and Concrete Research 30 (8): 1255–1261.

    Article  Google Scholar 

  • Fortes-Revilla C, Martínez-Ramírez S, Blanco-Varela MT (2006) Modeling of slaked lime–metakaolin mortar engineering characteristics in terms of process variables. Cement & Concrete Composites 28: 458–467.

    Article  Google Scholar 

  • Fraire-Luna PE, Escalante-Garcia JI, Gorokhovsky A (2006) Composite systems fluorgypsum–blast furnace slag–metakaolin, strength and microstructures. Cement and Concrete Research 36: 1048–1055.

    Article  Google Scholar 

  • Frías. M, Cabrera J (2000) Pore size distribution and degree of hydration of MK-Cement pastes. Cement and Concrete Research 30: 561–569.

    Article  Google Scholar 

  • Frías M, Cabrera J (2001) Influence of MK on the reaction kinetics in MK/lime and MK-blended cement systems at 20ĉ. Cement and Concrete Research 31: 519–527.

    Article  Google Scholar 

  • Frías M, Sánchez de Rojas MI, Cabrera J (2000) The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cement and Concrete Research 30: 209–216.

    Article  Google Scholar 

  • Glinicki MA, Zielinski M (2004) Depth-sensing indentation method for evaluation of efficiency of secondary cementitious materials. Cement and Concrete Research 34: 721–724.

    Article  Google Scholar 

  • Gruber KA, Ramlochan T, Boddy A, Hooton, RD, Thomas MDA (2001) Increasing concrete durability with high-reactivity metakaolin. Cement and Concrete Research 23 (6): 479–484.

    Article  Google Scholar 

  • Hooton RD, Gruber KA, Boddy A (1997) The chloride penetration resistance of concrete containing high reactivity metakaolin. Proceedings of the PCI/FHWA International Symposium on High Performance Concrete, New Orleans, LA, pp. 172–183.

    Google Scholar 

  • Igurashi S, Bentur A, Mindess S (1996) Micro-hardness testing of cementitious materials. Advanced Cement Based Materials 4: 48–57.

    Google Scholar 

  • Jin X, Li Z (2003) Effects of mineral admixture on properties of young concrete. Journal of Materials in Civil Engineering 15 (5): 435–442.

    Article  Google Scholar 

  • Khatib JM, Clay RM (2004) Absorption characteristics of metakaolin concrete. Cement and Concrete Research. 34 (1): 19–29.

    Article  Google Scholar 

  • Khatib JM, Mangat PS (1995) Absorption characteristics of concrete as a function of location relative to casting position. Cement and Concrete Research 25 (5): 999–1010.

    Article  Google Scholar 

  • Khatib JM, Wild S (1996) Pore size distribution of metakaolin paste. Cement and Concrete Research 26 (10): 1545–1553.

    Article  Google Scholar 

  • Khatib JM, Wild S (1998) Sulfate resistance of metakaolin mortar. Cement and Concrete Research 28 (1): 83–92.

    Article  Google Scholar 

  • Kinuthia JM, Wild S, Sabir BB, Bai J (2000) Self-compensating autogenous shrinkage in Portland cement-metakaolin-fly ash pastes. Advance Cement Research 12 (1): 35–43.

    Article  Google Scholar 

  • Klimesch DS, Ray A (1998a) Hydrogarnet formation during autoclaving at 180°C in unstirred metakaolin-lime-quartz slurries. Cement and Concrete Research 28 (8): 1109–1117.

    Article  Google Scholar 

  • Klimesch DS, Ray A (1998b) Autoclaved cement-quartz pastes with metakaolin additions. Advanced Cement Based Materials 7: 109–117.

    Article  Google Scholar 

  • Kostuch JA, Walters GV, Jones TR (1993) High performance concrete incorporating metakaolin – a review. Concrete 2000, University of Dundee, pp. 1799–1811.

    Google Scholar 

  • Larbi JA, Bijen JM (1992) Influence of pozzolans on the Portland cement paste – aggregate interface in relation to diffusion of ions and water absorption in concrete. Cement and Concrete Research 22: 551–562.

    Article  Google Scholar 

  • Lee ST, Moon HY, Hooton RD, Kim JP (2005) Effect of solution concentrations and replacement levels of metakaolin on the resistance of mortars exposed to magnesium sulfate solutions. Cement and Concrete Research 35: 1314–1323.

    Article  Google Scholar 

  • Li Z, Ding Z (2003) Property improvement of Portland cement by incorporating with metakaolin and slag. Cement and Concrete Research 33: 579–584.

    Article  Google Scholar 

  • Lyubimova TY, Pinus ER (1962) Crystallization structure in the contact zone between aggregate and cement. Concr. Kolloidn. Z. (USSR) 24 (5): 578–587.

    Google Scholar 

  • Murat M (1983) Hydration reaction and hardening of calcined clays and related minerals. Cement and Concrete Research 13: 259–266.

    Article  Google Scholar 

  • Oriol M, Pera J (1995) Pozzolanic activity of metakaolin under microwave treatment. Cement and Concrete Research 25 (2): 265–270.

    Article  Google Scholar 

  • Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW (1999) Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research 29: 997–1004.

    Article  Google Scholar 

  • Pera J, Ambroise J, Messi, A (1998) A pozzolanic activity of calcined laterite. Silicates Industries, Ceram Sci Technol 63 (7–8): 107–111.

    Google Scholar 

  • Poon CS, Azhar S, Anson M, Wong YL (2003) Performance of metakaolin concrete at elevated temperatures. Cement & Concrete Composites 25: 83–89.

    Article  Google Scholar 

  • Poon CS, Kou SC, Lam L (2006) Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Construction and Building Materials 20: 858–865.

    Article  Google Scholar 

  • Poon CS, Lam L, Kou SC, Wong YL, Wong R (2001) Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cement and Concrete Research 31: 1301–1306.

    Article  Google Scholar 

  • Poon CS, Shui ZH, Lam L (2004) Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research 34: 2215–2222.

    Article  Google Scholar 

  • Potgieter-Vermaak SS, Potgieter JH (2006) Metakaolin as an extender in South African cement. Journal of Materials in Civil Engineering 18 (4): 619–623.

    Article  Google Scholar 

  • Qian X, Li Z (2001) The relationships between stress and strain for high-performance concrete with metakaolin. Cement and Concrete Research 31: 1607–1611.

    Article  Google Scholar 

  • Ramlochan T, Thomas M, Gruber KA (2000) The effect of metakaolin on alkali-silica reaction in concrete. Cement and Concrete Research 30: 339–344.

    Article  Google Scholar 

  • Ramlochan T, Zacarias P, Thomas MDA, Hooton RD (2004) The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature Part II: Microstructural and microchemical investigations. Cement and Concrete Research 34: 1341–1356.

    Article  Google Scholar 

  • Razak HA, Chai HK, Wong HS (2004) Near surface characteristics of concrete containing supplementary cementing materials. Cement & Concrete Composites 26: 883–889.

    Google Scholar 

  • Razak HA, Wong HS (2005) Strength estimation model for high-strength concrete incorporating metakaolin and silica fume. Cement and Concrete Research 35: 688–695.

    Article  Google Scholar 

  • Rojas MF (2006) Study of hydrated phases present in a MK–lime system cured at 60°C and 60 months of reaction. Cement and Concrete Research 36: 827–831.

    Article  Google Scholar 

  • Rojas MF, Cabrera J (2002) The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin–lime–water systems. Cement and Concrete Research 32: 133–138.

    Article  Google Scholar 

  • Rojas MF, Sánchez de Rojas MI (2003) The effect of high curing temperature on the reaction kinetics in MK/lime and MK-blended cement matrices at 60°C. Cement and Concrete Research 33: 643–649.

    Article  Google Scholar 

  • Roy DM, Arjunan P, Silsbee MR (2001) Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cement and Concrete Research 31: 1809–1813.

    Article  Google Scholar 

  • Saikia NJ, Sengupta P, Gogoi PK, Borthakur PC (2002a) Cementitious properties of metakaolin–normal Portland cement mixture in the presence of petroleum effluent treatment plant sludge. Cement and Concrete Research 32: 1717–1724.

    Article  Google Scholar 

  • Saikia NJ, Sengupta P, Gogoi PK, Borthakur PC (2002b) Hydration behavior of lime–co-calcined kaolin–petroleum effluent treatment plant sludge. Cement and Concrete Research 32: 297–302.

    Article  Google Scholar 

  • Saito M, Kawamura M (1986) Resistance of the cement – aggregate interfacial zone to the propagation of cracks. Cement and Concrete Research 16 (5): 653–661.

    Article  Google Scholar 

  • Salvador S (1995) Pozzolanic properties of flash-calcined kaolinite: A comparative study with soak-calcined products. Cement and Concrete Research 25 (1): 102–112.

    Article  Google Scholar 

  • Sayanam RA, Kalsotra AK, Mehta SK, Singh RS, Mandal G (1989) Studies on thermal transformations and pozzolanic activities of clay from Jamu region (India). Journal of Thermal Analysis 35: 99–106.

    Article  Google Scholar 

  • Shvarzman A, Kovler K, Grader GS, Shter GE (2003) The effect of dehydroxylation/ amorphization degree on pozzolanic activity of kaolinite. Cement and Concrete Research 33: 405–416.

    Article  Google Scholar 

  • Smallwood I, Wild S, Morgan E (2003) The resistance of metakaolin (MK)–Portland cement (PC) concrete to the thaumasite-type of sulfate attack (TSA)—-Programme of research and preliminary results. Cement & Concrete Composites 25: 931–938.

    Article  Google Scholar 

  • Sun W, Zhang Y-S, Lin W, Liu Z-Y (2004) In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM. Cement and Concrete Research 34: 935–940.

    Article  Google Scholar 

  • Thomas MDA, Gruber KA, Hooton RD (1997) The use of high reactivity metakaolin in high performance concrete, 1st Engineering Foundation Conference on High Strength Concrete, Hawaii, pp. 517–530.

    Google Scholar 

  • Tsivilis S, Kakali G, Skaropoulou A, Sharp JH, Swamy RN (2003) Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar. Cement & Concrete Composites 25: 969–976.

    Article  Google Scholar 

  • Wild S, Khatib JM (1997) Portlandite Consumption in metakaolin cement pastes and mortars. Cement end Concrete Research 27 (1): 137–146.

    Article  Google Scholar 

  • Wild S, Khatib JM, Jones A (1996) Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cement and Concrete Research 26 (10): 1537–1544.

    Article  Google Scholar 

  • Wild S, Khatib J, Roose JL (1998) Chemical and autogenous shrinkage of Portland cement-metakaolin pastes. Advance Cement Research 10 (3): 109–119.

    Google Scholar 

  • Wong HS, Razak HA (2005) Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance. Cement and Concrete Research 35: 696–702.

    Article  Google Scholar 

  • Zhang MH, Malhotra VM (1995) Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cement and Concrete Research 25 (8): 1713–1725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siddique, R. (2008). Metakaolin. In: Waste Materials and By-Products in Concrete. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74294-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74294-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74293-7

  • Online ISBN: 978-3-540-74294-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics