Skip to main content

Advances in dynamic light scattering techniques

  • Chapter
Light Scattering Reviews 4

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Recent developments in processing techniques and detection hardware have opened new horizons for the application of light scattering methods based on the dynamic analysis of coherent scattered light. The increased computational power of modern microprocessors allows real-time data evaluation on standard desktop computers. The continuous improvement of detector arrays, such as cameras based on CCD or CMOS technologies, facilitate space-resolved detection of scattering intensities, which can be used to boost the statistical weight accumulated in a single experiment. New methods and improved accuracy on the other hand also provide answers to questions concerning the quantitative data interpretation which were only partially addressed in some of the earlier work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.N. Pusey. Photon correlation study of laser speckle produced by a moving rough surface. Journal of Physics D: Applied Physics, 9(10):1399–1409, 1976.

    Article  Google Scholar 

  2. J.D. Briers. Laser doppler and time-varying speckle: a reconciliation. J. Opt. Soc. Am. A 13:345–350, 1996.

    Article  Google Scholar 

  3. B. Chu. Laser light scattering. Annu. Rev. Phys. Chem., 21:145–174, 1970.

    Article  Google Scholar 

  4. R. Pecora. Doppler shifts in light scattering from pure liquids and polymer solutions. The Journal of Chemical Physics, 40:1604, 1964.

    Article  Google Scholar 

  5. B.J. Berne and R. Pecora. Dynamics Light Scattering. With Applications to Chemistry, Biology, and Physics. Dover Publications, New York, 2000.

    Google Scholar 

  6. G. Maret and P.-E. Wolf. Multiple light scattering from disordered media. the effect of brownian motion of scatterers. Z. Phys. B, 65:409–413, 1987.

    Article  Google Scholar 

  7. D.J. Pine, D.A. Weitz, P.M. Chaikin, and E. Herbolzheimer. Diffusing-wave spectroscopy. Phys. Rev. Lett., 60:1134–1137, 1988.

    Article  Google Scholar 

  8. X. Qiu, X.L. Wu, J.Z. Xue, D.J. Pine, D.A. Weitz, and P.M. Chaikin. Hydrodynamic interactions in concentrated suspensions. Physical Review Letters, 65(4):516–519, 1990.

    Article  Google Scholar 

  9. P.D. Kaplan, A.G. Yodh, and D.J. Pine. Diffusion and structure in dense binary suspensions. Physical Review Letters, 68(3):393–396, 1992.

    Article  Google Scholar 

  10. D.J. Durian, D.A. Weitz, and D.J. Pine. Multiple light-scattering probes of foam structure and dynamics. Science, 252(5006):686–688, 1991.

    Article  Google Scholar 

  11. S. Cohen-Addad and R. Höhler. Bubble dynamics relaxation in aqueous foam probed by multispeckle diffusing-wave spectroscopy. Physical Review Letters, 86(20):4700–4703, 2001.

    Article  Google Scholar 

  12. J. Li, G. Dietsche, D. Iftime, S.E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler. Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy. Journal of Biomedical Optics, 10:044002, 2005.

    Article  Google Scholar 

  13. I.V. Meglinski and V.V. Tuchin. Diffusing wave spectroscopy: application for skin blood monitoring. Handbook of Coherent Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science. Kluwer Academic Publishers, 2004.

    Google Scholar 

  14. F. Scheffold, S.E. Skipetrov, S. Romer and P. Schurtenberger. Diffusing-wave specroscopy of nonergodic media. Phys. Rev. E, 63:061404–061411, 2001.

    Article  Google Scholar 

  15. F. Scheffold and P. Schurtenberger. Light scattering probes of viscoelastic fluids and solids. Soft Materials, 1(12):139–165, 2003.

    Article  Google Scholar 

  16. F. Scheffold and R. Cerbino. New trends in light scattering. Current Opinion in Colloid & Interface Science, 12(1):50–57, 2007.

    Article  Google Scholar 

  17. D.J. Pine, D.A. Weitz, J.X. Zhu, and E. Herbolzheimer. Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit. J. Physique, 51:2101–2127, 1990.

    Article  Google Scholar 

  18. D.J. Durian. Accuracy of diffusing-wave spectroscopy theories. Phys. Rev. E, 51:3350–3358, 1995

    Article  Google Scholar 

  19. P.D. Kaplan, M.H. Kao, A.G. Yodh, and D.J. Pine. Geometric constraints for the design of diffusing-wave spectroscopy experiments. Appl. Opt., 32:3828–3836, 1993.

    Google Scholar 

  20. W. van Megen and P.N. Pusey. Dynamic light scattering study of the glass transition in colloidal suspension. Phys. Rev. A, 43:5429–5441, 1991.

    Article  Google Scholar 

  21. C. Urban and P. Schurtenberger. Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J. Colloid Interface Sci., 207:150–158, 1998.

    Article  Google Scholar 

  22. D. Lehner, G. Kellner, H. Schnablegger, and O. Glatter. Static light scattering on dense colloidal systems: New instrumentation and experimantal results. J. Colloid Interface Sci., 201:34–47, 1998.

    Article  Google Scholar 

  23. J.C. Thomas and S.C. Tjin. Fiber optic dynamic light scattering (fodls) from moderately concentrated suspensions. J. Colloid Interface Sci., 129:15–31, 1989.

    Article  Google Scholar 

  24. D. Lilge and D. Horn. Diffusion in concentrated dispersions: a study with fiber-optic quasi-elastic light scattering (foquels). Colloid & Polymer Science, 269:704–712, 1991.

    Article  Google Scholar 

  25. H. Wiese and D. Horn. Single-mode fibers in fiber-optic quasielastic light scattering: a study of the dynamics of concentrated latex dispersions. Journal of Chemical Physics, 84:6429, 1991.

    Article  Google Scholar 

  26. F.M. Horn, W. Richtering, J. Bergenholtz, N. Willenbacher, and N.J. Wagner. Hydrodynamic and colloidal interactions in concentrated charge-stabilized polymer dispersions. J. Colloid Interface Sci., 225:166, 2000.

    Article  Google Scholar 

  27. G.D.J. Phillies. Suppression of multiple-scattering effects in quasielastic-light-scattering spectroscopy by homodyne cross-correlation techniques. J. Chem. Phys., 74:260–262, 1981.

    Article  Google Scholar 

  28. G.D.J. Phillies. Experimental demonstration of multiple-scattering suppression in quasielastic-light-scattering spectroscopy by homodyne coincidence techniques. Phys. Rev. A, 24:1939–1943, 1981.

    Article  Google Scholar 

  29. K. Schätzel. Suppression of multiple scattering by photon cross-correlation techniques. J. Mol. Opt., 38:1849–1865, 1991.

    Article  Google Scholar 

  30. P.N. Pusey. Suppression of multiple scattering by photon cross-correlation techniques. Curr. Opin. Colloid Interface Sci. 4:177–185, 1999.

    Article  Google Scholar 

  31. LS Instruments. http://www.lsinstruments.ch.

    Google Scholar 

  32. P. Zakharov, S. Bhat, P. Schurtenberger, and F. Scheffold. Multiple-scattering suppression in dynamic light scattering based on a digital camera detection scheme. Appl. Opt., 45:1756–1764, 2006.

    Article  Google Scholar 

  33. W. Meyer, D. Cannell, A. Smart, T. Taylor, and P. Tin. Multiple-scattering suppression by cross correlation. Appl. Opt., 36(40):7551–7558, 1997.

    Article  Google Scholar 

  34. J.-M. Schröder, A. Becker, and S. Wiegand. Suppression of multiple scattering for the critical mixture polystyrene/cyclohexane: application of the one-beam cross correlation technique. J. Chem. Phys., 118(24):11307–11314, 2003.

    Article  Google Scholar 

  35. J.W. Goodman, Statistical Optics. John Wiley & Sons, New York, 1985.

    Google Scholar 

  36. J.A. Lock. Role of multiple scattering in cross-correlated light scattering with a single laser beam. Appl. Opt., 36(30):7559–7570, 1997.

    Article  Google Scholar 

  37. K. Schätzel. Norse on photon correlation data. i. autocorrelation funtions. Quantum Optics: Journal of the European Optical Society Part B, 2(4):287–305, 1990.

    Article  Google Scholar 

  38. K. Schätzel, M. Drewel, and S. Stimac. Photon correlations measurements at large lag times: improving statistical accuracy. J. Mod. Opt., 35:711–718, 1988.

    Article  Google Scholar 

  39. ALV-Laser Vertriebsgesellschaft m-b.h. http:// www.alvgmbh.de/index.html.

    Google Scholar 

  40. D. Magatti and F. Ferri. Fast multi-tau real-time software correlator for dynamic light scattering. Appl. Opt., 40:4011–4021, 2001.

    Article  Google Scholar 

  41. L. Cipelletti and D.A. Weitz. Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator. Rev. Sci. Instrum., 70:3214–3221, 1999.

    Article  Google Scholar 

  42. R. Bonner and R. Nossal. Model for laser doppler measurements of blood flow in tissues. Appl. Opt. 20, 1981.

    Google Scholar 

  43. D.A. Boas and A.G. Yodh. Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. JOSA, 14(1):192–215, 1997.

    Article  Google Scholar 

  44. G.E. Nilsson, E.G. Salerud, N.O.T. Strömberg, and K. Wardell. Laser doppler perfusion monitoring and imaging, in Biomedical Photonics Handbook, CRC Press, Boca Raton, FL, 2003.

    Google Scholar 

  45. A. Humeau, W. Steenbergen, H. Nilsson, and T. Strömberg. Laser Doppler perfusion monitoring and imaging: novel approaches. Medical and Biological Engineering and Computing, 45(5):421–435, 2007.

    Article  Google Scholar 

  46. Ch. Beck, W. Hartl, and R. Hempelmann. The glass transition of charged and hard sphere silica colloids. The Journal of Chemical Physics, 111(17):8209–8213, 1999.

    Article  Google Scholar 

  47. W. van Megen and S.M. Underwood. Glass transition in colloidal hard spheres: measurement and mode-coupling-theory analysis of the coherent intermediate scattering function. Phys. Rev. E, 49(5):4206–4220, 1994.

    Article  Google Scholar 

  48. P.N. Pusey and W.V. Megen. Dynamic light scattering by non-ergodic media. Physica A, 57:705–742, 1989.

    Article  Google Scholar 

  49. J.-Z. Xue, D.J. Pine, S.T. Milner, X.L. Wu, and P.M. Chaikin. Nonergodicity and light scattering from polymer gels. Phys. Rev. A, 46(10):6550–6563, 1992.

    Article  Google Scholar 

  50. G. Nisato, P. Hébraud, J.P. Munch and SJ Candau. Diffusing-wave-spectroscopy investigation of latex particle motion in polymer gels. Phys. Rev. E, 61(3):2879–2887, 2000.

    Article  Google Scholar 

  51. K. Schätzel. Accuracy of photon correlation measurements on nonergodic samples. Appl. Opt., 32(21):3880, 1993.

    Google Scholar 

  52. A.P.Y. Wong and P. Wiltzius. Dynamic light scattering with a CCD camera Review of Scientific Instruments, 64(9):2547–2549, 1993.

    Article  Google Scholar 

  53. E. Bartsch, V. Frenz, J. Baschnagel, W. Schärtl, and H. Sillescu. The glass transition dynamics of polymer micronetwork colloids. a mode coupling analysis. J. Chem. Phys., 106(9):3743–3756, 1997.

    Article  Google Scholar 

  54. V. Viasnoff, F. Lequeux, and D.J. Pine. Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time dependent dynamics. Rev. Sci. Instrum., 73(6):2336–2344, 2002.

    Article  Google Scholar 

  55. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler. Fiber-based multi-speckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue. Appl. Opt., 46(35):8506–8514, 2007.

    Article  Google Scholar 

  56. A. Serov, W. Steenbergen, and F. de Mul. Laser Doppler perfusion imaging with a complementary metal oxide semiconductor image sensor. Optics Letters, 27(5):300–302, 2002.

    Article  Google Scholar 

  57. F. Scheffold S. Romer and P. Schurtenberger. Sol-gel transition of concentrated colloidal suspensions. Phys. Rev. Lett., 85:4980, 2000.

    Article  Google Scholar 

  58. K.N. Pham, S.U. Egelhaaf, A. Moussaï, and P.N. Pusey. Ensemble-averaging in dynamic light scattering by an echo technique. Rev. Sci. Instrum., 75(7):2419–2431, 2004.

    Article  Google Scholar 

  59. P. Zakharov and F. Scheffold. Light scattering technique reveals properties of soft solids. SPIE Newsroom, 11, 2006.

    Google Scholar 

  60. P. Zakharov, F. Cardinaux, and F. Scheffold. Accuracy preserving methods for faster measurements with dynamic light scattering and diffusing wave spectroscopy. In SPIE Proceedings, vol. 6164, 2006.

    Google Scholar 

  61. P. Zakharov, F. Cardinaux, and F. Scheffold. Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme. Phys. Rev. E, 73: 011413, 2006. arXiv:condmat/0509637.

    Article  Google Scholar 

  62. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in C: The Art of Scientific Computing Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  63. S. Chopra and L. Mandel. An electronic correlator for photoelectric correlation measurements. Rev. Sci. Instrum., 43(10): 1489–1491, 1972.

    Article  Google Scholar 

  64. D.A. Zimnyakov, P.V. Zakharov, V.A. Trifonov, and O.I. Chanilov. Dynamic light scattering study of the interface evolution in porous media. JETP Letters, 74(4): 216–221, 2001

    Article  Google Scholar 

  65. P.V. Zakharov and D.A. Zimnyakov. Wavelet analysis of fluctuations of laser radiation scattered from interphase boundaries in porous media. Technical Physics Letters, 28(12): 1015–1017, 2002.

    Article  Google Scholar 

  66. P. Zakharov. Applicatoon of speckle-correlation technique for multi-phase dynamic systems testing (in Russian). PhD thesis, Saratov State University, 2003.

    Google Scholar 

  67. S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.

    Google Scholar 

  68. P.V. Zakharov and D.A. Zimnyakov. Spectral analysis of non-stationary speckle fluctuations: different data processing techniques. In Proc. SPIE, Saratov Fall Meeting 2002, vol. 5067, pp. 121–125, 2003.

    Google Scholar 

  69. L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, and S. Mazoyer. Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics. Journal of Physics Condensed Matter, 15: S257–S262, 2003.

    Article  Google Scholar 

  70. P. Ballesta, Ch. Ligoure, and L. Cipelletti. Temporal heterogeneity of the slow dynamics of a colloidal paste. vol. 708, pp. 68–71. AIP, 2004.

    Google Scholar 

  71. A. Duri, H. Bissig, V. Trappe, and L. Cipelletti. Time-resolved-correlation measurements of temporally heterogeneous dynamics. Phys. Rev. E, 72(5):051401, 2005.

    Article  Google Scholar 

  72. L. Cipelletti and L. Ramos. Slow dynamics in glassy soft matter. J. Phys.: Condens. Matter, 17:R253–R285, 2005.

    Article  Google Scholar 

  73. K. Schätzel. Noise in photon correlation and photon structure functions. J. Mod. Opt., 30:155–166, 1983.

    Article  Google Scholar 

  74. G. Lorusso, A. Minafra, and V. Capozzi. Noise dependence of correlation and structure functions on mean count rate and sampling time. Appl. Opt., 32:3867, 1993.

    Google Scholar 

  75. P. Zakharov and F. Scheffold. Observation of spatially heterogeneous dynamics in a drying colloidal thin film. eprint arXiv: 0704.0681, 2007.

    Google Scholar 

  76. P.V. Zakharov and D.A. Zimnyakov. Speckle correlometry visualization of imbibition front. In Proc. SPIE, Saratov Fall Meeting 2002, pp. 116–120, 2003.

    Google Scholar 

  77. D.E. Koppel. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J. Chem. Phys., 57:4814–4820, 1972.

    Article  Google Scholar 

  78. F, Scheffold, R. Cerbino, P. Zakharov, and J. Peuser. Tba. In preparation.

    Google Scholar 

  79. A. Serov and T. Lasser. High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor. Optics Express, 13(17):6416–6428, 2005.

    Article  Google Scholar 

  80. V. Rajan, B. Varghese, T.G. van Leeuwen, and W. Steenbergen. Speckles in laser Doppler perfusion imaging. Optics Letters, 31(4):468–470, 2006.

    Article  Google Scholar 

  81. A.F. Fercher and J.D. Briers. Flow visualization by means of single-exposure speckle photography. Opt. Commun., 37:326–329, 1981.

    Article  Google Scholar 

  82. J.D. Briers and A.F. Fercher. Retinal blood-flow visualization by means of laser speckle photography. Inv. Ophthalmol. Vis. Sci., 22:255–259, 1982.

    Google Scholar 

  83. R. Bandyopadhyay, A.S. Gittings, S.S. Suh, P.K. Dixon, and D.J. Durian. Specklevisibility spectroscopy: a tool to study time-varying dynamics. Rev. Sci. Instrum., 76:093110, 2005.

    Article  Google Scholar 

  84. J.D. Briers. Laser doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiological Measurement, 22(4):R35–R66, 2001.

    Article  Google Scholar 

  85. B. Weber, C. Burger, M.T Wyss, G.K. von Schulthess, F. Scheffold, and A. Buck. Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex. Eur. J. Neurosci., 20(10):2664, 2004.

    Article  Google Scholar 

  86. P.K. Dixon and D.J. Durian. Speckle visibility spectroscopy and wvariable granular fluidization. Phys. Rev. Lett., 90:184302, 2003.

    Article  Google Scholar 

  87. P. Zakharov, A.C. Völker, B. Weber, F. Buck, and F. Scheffold. Quantitative modeling of laser speckle imaging. Opt. Lett., 31(23):3465–3467, 2006.

    Article  Google Scholar 

  88. S. Yuan, D.A. Boas, and A.K. Dunn. Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging. Appl. Opt., 44(10):1823–1830, 2005.

    Article  Google Scholar 

  89. T. Durduran, M.G. Burnett, C. Zhou, G. Yu, D. Furuya, A.G. Yodh, J.A. Detre, and J.H. Greenberg. Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry. Journal of Cerebral Blood Flow & Metabolism, 24:518–525, 2004.

    Google Scholar 

  90. moorFLPI — Full Field, Video Frame Rate Blood Flow Imaging. http://www.moor.co.uk/products/imaging/moorflpi.

    Google Scholar 

  91. A.C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold. Laser speckle imaging with active noise reduction scheme. Opt. Exp., 13(24):9782–9787, 2005.

    Article  Google Scholar 

  92. J.D. Briers and S. Webster. Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields. Opt. Commun., 116:36–42, 1995.

    Article  Google Scholar 

  93. H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng. Laser speckle imaging of blood flow in microcirculation. Physics in Medicine and Biology, 49(7):1347–1357, 2004.

    Article  Google Scholar 

  94. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong. Modified laser speckle imaging method with improved spatial resolution. J. Biomed. Opt., 8:559–564, 2003.

    Article  Google Scholar 

  95. Q. Luo, H. Cheng, Z. Wang, and V.V. Tuchin. Laser speckle imaging of cerebral blood flow. In Handbook of Coherent Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, V.V. Tuchin (ed.). Kluwer, New York, 2004.

    Google Scholar 

  96. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo. Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Optics Letters, 31(12):1824–1826, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Zakharov, P., Scheffold, F. (2009). Advances in dynamic light scattering techniques. In: Kokhanovsky, A.A. (eds) Light Scattering Reviews 4. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74276-0_8

Download citation

Publish with us

Policies and ethics