Skip to main content

Space-time Green functions for diffusive radiation transport, in application to active and passive cloud probing

  • Chapter

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Clouds are a feast for the eye but, when contemplating their fluid beauty, it is important — at least for scientists — to bear in mind that they are also key elements of the Earth’s climate system. They are indeed the first-order regulators of the intake in solar energy: What portion goes back to space? What reaches the surface (then warms the ground, drives photosynthesis, etc.)? Clouds also contribute strongly to the vertical distribution of solar heating and, from there, the thermal balance of the atmosphere. These are well-known and relatively well-understood/modeled climate roles of clouds, as can be expected for such naturally occurring components of the atmosphere. We note that these roles involve radiative transfer across the electromagnetic spectrum. What is far less understood about clouds is how they interact microphysically, chemically and thermo-hydrodynamically, with other natural and anthropogenic constituents, especially aerosols. These are known as cloud feedback mechanisms in the parlance of climate science, and have been identified as the single most resilient roadblock in the way of reducing uncertainty in future climate prediction [1], an enterprise that relies heavily on models to explore various scenarios in global greenhouse gas emissions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Solomon, D. Qin, and M. Manning, editors. Climate Change 2007: The Physical Science Basis. Intergovernmental Panel on Climate Change, Geneva, 2007.

    Google Scholar 

  2. I. Koren, G. Feingold, L.A. Remer, and O. Altaratz. How small is a small cloud? Atmos. Chem. Phys. Discuss., 8:3855–3864, 2008.

    Google Scholar 

  3. I. Koren, L.A. Remer, Y.J. Kaufman, Y. Rudich, and J.V. Martins. On the twilight zone between clouds and aerosols. Geophys. Res. Lett., 34:L08805, doi:10.1029/2007GL029253, 2007.

    Google Scholar 

  4. A. Ishimaru. Wave Propagation and Scattering in Random Media. Academic Press, New York (NY), 1978.

    Google Scholar 

  5. M.I. Mishchenko. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Appl. Opt., 41:7114–7135, 2002.

    Google Scholar 

  6. P.J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque (NM), 1998.

    Google Scholar 

  7. D. Sornette, A.B. Davis, K. Ide, K.R. Vixie, V. Pisarenko, and J.R. Kamm. Algorithm for model validation, Theory and applications. Proc. Nat. Acad. Sci. U.S.A., 104:6562–6567, 2007.

    Google Scholar 

  8. D. Sornette, A.B. Davis, J.R. Kamm, and K. Ide. A general strategy for physics-based model validation illustrated with earthquake phenomenology, atmospheric radiative transfer, and computational fluid dynamics. In F. Graziani, editor, Computational Methods in Transport — Granlibakken 2006, volume 62 of Lecture Notes in Computational Science and Engineering, pages 19–73. Springer-Verlag, New York (NY), 2008.

    Google Scholar 

  9. V.V. Sobolev. A Treatise of Radiative Transfer. Van Nostrand, New York (NY), 1963.

    Google Scholar 

  10. A.B. Davis and A. Marshak. Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distribution. J. Quant. Spectrosc. Rad. Transf., 84:3–34, 2004.

    Google Scholar 

  11. S. Chandrasekhar. Radiative Transfer. Oxford University Press, Oxford (UK), 1950. [Reprinted by Dover Publications, New York (NY), 1960.]

    Google Scholar 

  12. D. Mihalas. Stellar Atmospheres.. Freeman, San Francisco (CA), 1979.

    Google Scholar 

  13. M.I. Mishchenko. Multiple scattering, radiative transfer, and weak localization in discrete random media: unified microphysical approach. Rev. Geophys., 46:RG2003, doi:10.1029/2007RG000230, 2008.

    Google Scholar 

  14. R.M. Goody and Y.L. Yung. Atmospheric Radiation Theoretical Basis. Oxford University Press, New York (NY), 1989.

    Google Scholar 

  15. C.F. Bohren and D.R. Huffman. Absorption and Scattering of Light by Small Particles. Wiley, New York (NY), 1983.

    Google Scholar 

  16. M.I. Mishchenko, J.W. Hovenier, and L.D. Travis, editors. Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press, San Diego (CA), 2000.

    Google Scholar 

  17. M.I. Mishchenko. Radiative transfer in clouds with small-scale inhomogeneities: the microphysical approach. Geophys. Res. Lett., 33:L14820, doi:10.1029/2006GL026312, 2006.

    Google Scholar 

  18. K.F. Evans. The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci., 55:429–446, 1998.

    Google Scholar 

  19. K.F. Evans and A. Marshak. Numerical methods. In: A. Marshak and A.B. Davis, editors, 3D Radiative Transfer in Cloudy Atmospheres, chapter 4, pages 243–281. Springer-Verlag, Heidelberg, Germany, 2005.

    Google Scholar 

  20. D. Deirmendjian. Electromagnetic Scattering on Spherical Polydispersions. Elsevier, New York (NY), 1969.

    Google Scholar 

  21. K.F. Evans, R.P. Lawson, P. Zmarzly, and D. O’Connor. In situ cloud sensing with multiple scattering cloud lidar: simulations and demonstration. J. Atmos. Ocean. Tech., 20:1505–1522, 2003.

    Google Scholar 

  22. F.E. Nicodemus, J.C. Richmond, J.J. Hsia, I.W. Ginsberg, and T. Limperis. Geometrical Considerations and Nomenclature for Reflectance. Technical Report NBS Monograph No. 160, National Bureau of Standards, Washington (DC), 1977.

    Google Scholar 

  23. G.I. Bell and S. Glasstone. Nuclear Reactor Theory. Van Nostrand Reinholt, New York (NY), 1970.

    Google Scholar 

  24. A.B. Davis and A. Marshak. Space-time characteristics of light transmitted through dense clouds: a Green’s function analysis. J. Atmos. Sci., 59:2713–2727, 2002.

    Google Scholar 

  25. L.C. Henyey and J.L. Greenstein. Diffuse radiation in the galaxy. Astrophys. J., 93:70–83, 1941.

    Google Scholar 

  26. H. Gerber, Y. Takano, T.J. Garrett, and P.V. Hobbs. Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in arctic clouds. J. Atmos. Sci., 57:3021–3034, 2000.

    Google Scholar 

  27. A. Marshak, A. Davis, R.F. Cahalan, and W.J. Wiscombe, Bounded cascade models as non-stationary multifractals. Phys. Rev. E, 49:55–69, 1994.

    Google Scholar 

  28. R.F. Cahalan and J.B. Snider. Marine stratocumulus structure during FIRE. Remote Sens. Environ., 28:95–107, 1989.

    Google Scholar 

  29. G.I. Marchuk, G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin, and B. Elepov. The Monte Carlo Methods in Atmospheric Optics, Springer-Verlag, New York (NY), 1980.

    Google Scholar 

  30. H. Pawlowska, J.-L. Brenguier, Y. Fouquart, W. Armbruster, S. Bakan, J. Descloitres, J. Fischer, C. Flamant, A. Failloux, J.-F. Gayet, S. Gosh, P. Jonas, F. Parol, J. Pelon, and L. Schüller. Microphysical and radiative properties of stratocumulus clouds: The EUCREX mission 206 case study. Atm. Res., 55:85–102, 2000.

    Google Scholar 

  31. W. Feller. An Introduction to Probability Theory and its Applications, Volumes 1 & 2. Wiley, New York (NY), 1971.

    Google Scholar 

  32. I.L. Katsev. The study of some characteristics of a transient field of light. Zhurnal Prikladnoi Spektroskopii, 11:85–91, 1969 [in Russian].

    Google Scholar 

  33. W.M. Irvine. The formation of absorption bands and the distribution of photon optical paths in a scattering atmosphere. Bull. Astron. Inst. Neth., 17:226–279, 1964.

    Google Scholar 

  34. L.M. Romanova. Limiting cases of the path distribution function of photons emerging from a thick light-scattering layer. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 1:348–351, 1965.

    Google Scholar 

  35. L.M. Romanova. The distribution of photons paths in a plane layer of a turbid medium. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 1:596–602, 1965.

    Google Scholar 

  36. L.M. Romanova. Nonstationary light field in the deep layers of turbid medium illuminated by the narrow beam. Izv. Ak. Nauk SSSR, Fiz. Atm. Okeana, 5:463–472, 1969 [in Russian].

    Google Scholar 

  37. V.V. Ivanov and Sh. A. Sabashvili. Transfer of resonance radiation and photon random walks. Astrophysics and Space Science, 17:13–22, 1972.

    Google Scholar 

  38. D.I. Nagirner. Theory of nonstationary transfer of radiation. Astrofizika (English Transl.: Astrophysics), 10:274–289, 1974.

    Google Scholar 

  39. I.L. Katsev and E.P. Zege. On the connection between nonstationary radiation fields in absorbing and nonabsorbing media. Astrofizika, 10:219–225, 1974 [in Russian].

    Google Scholar 

  40. G.N. Plass and G.W. Kattawar. Reflection of light pulses from clouds. Appl. Opt. 10:2304–2310, 1971.

    Google Scholar 

  41. S. Chandrasekhar. On the diffuse reflection of a pencil of radiation by a plane-parallel atmosphere. Proc. Natl. Acad. Sci. U.S.A., 44:933–940, 1958.

    Google Scholar 

  42. L.M. Romanova. The light field in deep layers of a turbid medium illuminated by a narrow beam. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 4:175–179, 1968.

    Google Scholar 

  43. L.M. Romanova. Light field in the boundary layer of a turbid medium with strongly anisotropic scattering illuminated by a narrow beam. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 4:679–685, 1968.

    Google Scholar 

  44. L.M. Romanova. Effective size of the light spot on the boundaries of a thick turbid medium illuminated by a narrow beam. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 7: 270–277, 1971.

    Google Scholar 

  45. L.M. Romanova. Some characteristics of the light field generated by a point-collimated stationary light source in clouds and fog. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 7:758–764, 1971.

    Google Scholar 

  46. O.V. Bushmakova, E.P. Zege, and I.L. Katsev. The distribution of radiation density in the scattering media from a source of limited size. Izv. Ak. Nauk SSSR. Fiz. Atm. Okeana, 8:711–719, 1972 [in Russian].

    Google Scholar 

  47. A.P. Odell and J.A. Weinman. The effect of atmospheric haze on images of the Earth’s surface. J. Geophys. Res., 80:5035–5040, 1975.

    Google Scholar 

  48. B.D. Ganapol, D.E. Kornreich, J.A. Dahl, D.W. Nigg, S.N. Jahshan, and C.A. Temple. The searchlight problem for neutrons in a semi-infinite medium. Nucl. Sci. Eng. 118:38–53, 1994.

    Google Scholar 

  49. D.E. Kornreich and B.D. Ganapol. Numerical evaluation of the three-dimensional searchlight problem in a half-space. Nucl. Sci. Eng., 127:317–337, 1997.

    Google Scholar 

  50. C.F. Bohren, J.R. Linskens, and M.E. Churma. At what optical thickness does a cloud completely obscure the sun? J. Atmos. Sci., 52:1257–1259, 1995.

    Google Scholar 

  51. K.M. Case and P.F. Zweifel. Linear Transport Theory. Addison-Wesley, Reading (MA), 1967.

    Google Scholar 

  52. B. Davison. Neutron Transport Theory. Oxford University Press, London, UK, 1958.

    Google Scholar 

  53. K. Furutsu and Y. Yamada. Diffusion approximation for a dissipative random medium and the applications. Phys. Rev. E, 50:3634–3640, 1994.

    Google Scholar 

  54. T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura. Expression of optical diffusion coefficient in high-absorption media. Phys. Med. Biol., 42:2541–2549, 1997.

    Google Scholar 

  55. M. Bassani, F. Martelli, G. Zaccanti, and D. Contini. Independence of the diffusion coefficient from absorption: experimental and numerical evidence. Opt. Lett., 22:853–855, 1997.

    Google Scholar 

  56. D. Contini, F. Martelli, and G. Zaccanti. Photon migration through a turbid slab described by a model based on diffusion approximation, I. Theory. Appl. Opt., 36:4587–4599, 1997.

    Google Scholar 

  57. F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti. Photon migration through a turbid slab described by a model based on diffusion approximation, II. Theory. Appl. Opt., 36:4600–4612, 1997.

    Google Scholar 

  58. T. Durduran, A.G. Yodh, B. Chance, and D.A. Boas. Does the photon-diffusion coefficient depend on absorption? J. Opt. Soc. Am. A, 14:3358–3365, 1997.

    Google Scholar 

  59. K. Furutsu. Diffusion equation derived from space-time transport equation. J. Opt. Soc. Am., 70:360–366, 1980.

    Google Scholar 

  60. D.J. Durian. The diffusion coefficient depends on absorption. Opt. Lett., 23:1502–1504, 1998.

    Google Scholar 

  61. K. Rinzema, L.H.P. Murrer, and W.M. Starr. Direct experimental verification of light transport theory in an optical phathom. J. Opt. Soc. Am. A, 15:2078–2088, 1998.

    Google Scholar 

  62. R. Aronson and N. Corngold. Photon diffusion coefficient in an absorbing medium. J. Opt. Soc. Am. A, 16:1066–1071, 1999.

    Google Scholar 

  63. R. Graaff and J.J. Ten Bosch. Diffusion coefficient in photon diffusion theory. Opt. Lett., 25:43–45, 2000.

    Google Scholar 

  64. W. Cai, M. Xu, M. Lax, and R.R. Alfano. Diffusion coefficient depends on time, not on absorption. Opt. Lett., 27:731–733, 2002.

    Google Scholar 

  65. R. Pierrat, J.-J. Greffet, and R. Carminati. Photon diffusion coefficient in scattering and absorbing media. J. Opt. Soc. Am. A, 23:1106–1110, 2006.

    Google Scholar 

  66. P.T. Partain, A.K. Heidinger, and G.L. Stephens. High spectral resolution atmospheric radiative transfer: application of equivalence theorem. J. Geophys. Res., D105:2163–2177, 2000.

    Google Scholar 

  67. M.D. King, L.F. Radke, and P.V. Hobbs. Determination of the spectral absorption of solar radiation by marine stratocumulus clouds from airborne measurements within clouds. J. Atmos. Sci., 47:894–907, 1990.

    Google Scholar 

  68. E.W. Larsen. Diffusion theory as an asymptotic limit of transport theory for nearly critical systems with small mean free paths. Annals of Nuclear Energy, 7:249–255, 1980.

    Google Scholar 

  69. G.C. Pomraning. Diffusion theory via asymptotics. Transp. Theory and Stat. Phys., 18:383–428, 1989.

    Google Scholar 

  70. S.M. Lovejoy, A. Davis, P. Gabriel, G.L. Austin, and D. Schertzer. Discrete angle radiative transfer, part 1 — scaling, similarity, universality and diffusion. J. Geophys. Res., D95:11,699–11,715, 1990.

    Google Scholar 

  71. M.C. Chu and W.S. Churchill. Numerical solution of problems in multiple scattering of electromagnetic radiation. J. Chem. Phys., 59:855–863, 1955.

    Google Scholar 

  72. J.H. Joseph, W.J. Wiscombe, and J.A. Weinman. The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33:2452–2459, 1976.

    Google Scholar 

  73. A.B. Davis and A. Marshak. Multiple scattering in clouds: Insights from threedimensional diffusion/P1 theory. Nucl. Sci. Eng., 137:251–280, 2001.

    Google Scholar 

  74. H.W. Barker and A.B. Davis. Approximation methods in atmospheric 3D radiative transfer, Part 2: Unresolved variability and climate applications. In: A. Marshak and A.B. Davis, editors, 3D Radiative Transfer in Cloudy Atmospheres, chapter 6, pages 343–383. Springer-Verlag, Heidelberg, Germany, 2005.

    Google Scholar 

  75. B. Cairns, A.W. Lacis, and B.E. Carlson. Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57:700–714, 2000.

    Google Scholar 

  76. E.W. Larsen. A generalized Boltzmann equation for ‘non-classical’ particle transport. In Proceedings of Joint International Topical Meetings on Mathematics & Computations and Supercomputing in Nuclear Applications (M&C+SNA 2007), Monterey (CA), April 15–19, 2007. Am. Nucl. Soc., 2007 [available on CD-ROM].

    Google Scholar 

  77. J.L.W.V. Jensen. Sur les fonctions convexes et les inégalitiés entre les valeurs moyennes. Acta Math., 30:175–193, 1906.

    Google Scholar 

  78. A.B. Kostinski. On the extinction of radiation by a homogeneous but spatially correlated random medium. J. Opt. Soc. Amer. A, 18:1929–1933, 2001.

    Google Scholar 

  79. R.A. Shaw, A.B. Kostinski, and D.D. Lanterman. Super-exponential extinction of radiation in a negatively-correlated random medium. J. Quant. Spectrosc. Radial. Transfer, 75:13–20, 2002.

    Google Scholar 

  80. A. Davis and A. Marshak. Lévy kinetics in slab geometry: scaling of transmission probability. In M.M. Novak and T.G. Dewey, editors, Fractal Frontiers, pages 63–72. World Scientific, Singapore, 1997.

    Google Scholar 

  81. A.B. Davis. Effective propagation kernels in structured media with broad spatial correlations, illustration with large-scale transport of solar photons through cloudy atmospheres. In F. Graziani, editor, Computational Methods in Transport — Granlibakken 2004, volume 48 of Lecture Notes in Computational Science and Engineering, pages 84–140. Springer-Verlag, New York (NY), 2006.

    Google Scholar 

  82. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential Equations, Cambridge University Press, New York (NY), 1996.

    Google Scholar 

  83. E.P. Zege, A.P. Ivanov, and I.L. Katsev. Image Transfer through a Scattering Medium. Springer Verlag, Heidelberg (Germany), 1991.

    Google Scholar 

  84. I.N. Polonsky, S.P. Love, and A.B. Davis. Wide-Angle Imaging Lidar deployment at the ARM Southern Great Plains site: intercomparison of cloud property retrievals. J. Atmos. Ocean. Tech., 22:628–648, 2005.

    Google Scholar 

  85. A.B. Davis, R.F. Cahalan, J.D. Spinhirne, M.J. McGill, and S.P. Love. Off-beam lidar: an emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth, B24:177–185 (Erratum 757–765), 1999.

    Google Scholar 

  86. S.P. Love, A.B. Davis, C. Ho, and C.A. Rohde. Remote sensing of cloud thickness and liquid water content with Wide-Angle Imaging Lidar. Atmos. Res., 59–60:295–312, 2001.

    Google Scholar 

  87. W.E. Meador and W.R. Weaver. Two-stream approximations to radiative transfer in planetary atmospheres: a unified description of existing methods and a new improvement. J. Atmos. Sci., 37:630–643, 1980.

    Google Scholar 

  88. A. Schuster. Radiation through a foggy atmosphere. Astrophys. J., 21:1–22, 1905.

    Google Scholar 

  89. E. Lommel. Die Photometrie der diffusen Zurüchwerfung. Sitz. Acad. Wissensch. München, 17:95–124, 1887.

    Google Scholar 

  90. O. Chowlson. Grunzüge einer mathematischen Theorie der inneren Diffusion des Lichtes. Bull. Acad. Imp. Sci. St. Petersburg, 33:221–256, 1889.

    Google Scholar 

  91. J.A. Weinman and M. Masutani. Radiative transfer models of the appearance of city lights obscured by clouds observed in nocturnal satellite images. J. Geophys. Res., 92:5565–5572, 1987.

    Google Scholar 

  92. A.B. Davis. Multiple-scattering lidar from both sides of the clouds: addressing internal structure. J. Geophys. Res., D113:14S10, doi:10.1029/2007 JD009666, 2008.

    Google Scholar 

  93. G. Thomas and K. Stamnes. Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, New York (NY), 1999.

    Google Scholar 

  94. E.P. Zege, I.N. Polonskii, and L.I. Chaikovskaya. Peculiarities of the radiation beam propagation at slant illumination of absorbing anisotropically scattering medium. Izv. Ak. Nauk SSSR, Fiz. Atm. Okeana, 23:486–492, 1987 [in Russian].

    Google Scholar 

  95. C. Guo and E.P. Krider. The optical and radiation field signatures produced by lightning return strokes. J. Geophys. Res., 87:8913–8922, 1982.

    Google Scholar 

  96. L.W. Thomason and E.P. Krider. The effects of clouds on the light produced by lightning. J. Atmos. Sci., 39:2051–2065, 1982.

    Google Scholar 

  97. W.J. Koshak, R.J. Solakiewicz, D.D. Phanord, and R.J. Blakeslee. Diffusion model for lightning radiative transfer. J. Geophys. Res., D99:14,361–14,371, 1994.

    Google Scholar 

  98. T.E. Light, D.M. Suszcynsky, M.W. Kirkland, and A.R. Jacobson. Simulations of lightning optical waveforms as seen through clouds by satellites. J. Geophys. Res., D106:17,103–17,114, 2001.

    Google Scholar 

  99. I.N. Polonsky and A.B. Davis. Lateral photon transport in dense scattering and weakly absorbing media of finite thickness: asymtotic analysis of the space-time Green function. J. Opt. Soc. Am. A, 21:1018–1025, 2004.

    Google Scholar 

  100. E.P. Zege, I.L. Katsev, and I.D. Sherbaf. The space-time distribution of the light field in the scattering medium from the pulse source. Izv. Ak. Nauk SSSR, Fiz. Atm. Okeana, 9:937–946, 1973 [in Russian].

    Google Scholar 

  101. O.V. Bushmakova, E.P. Zege, and I.L. Katsev. Light field in a layer of finite optical thickness with a pulse source. Izv. Ak. Nauk SSSR, Fiz. Atm. Okeana, 10:250–257, 1974 [in Russian].

    Google Scholar 

  102. P.I. Richards. Scattering from a point-source in plane clouds. J. Opt. Soc. Am., 46:927–934, 1956.

    Google Scholar 

  103. P.M. Morse and H. Feshbach. Methods of Theoretical Physics. McGraw-Hill, New York (NY), 1953.

    Google Scholar 

  104. M.D. King. Determination of the scaled optical thickness of clouds from reflected solar radiation measurements. J. Atmos. Sci., 44: 1734–1751, 1987.

    Google Scholar 

  105. D.J. Durian and J. Rudnick. Photon migration at short times and distances and in cases of strong absorption. J. Opt. Soc. Am. A, 14:235–245, 1997.

    Google Scholar 

  106. I.N. Polonsky and A.B. Davis. Off-Beam Cloud Lidar: A New Diffusion Model and an Analysis of LITE Returns. Technical Report LA-UR-05-0794, Los Alamos National Laboratory, Los Alamos, NM, 2005.

    Google Scholar 

  107. R.J. Hogan and A. Battaglia. Fast lidar and radar multiple-scattering models, Part 2: Wide-angle scattering using the time-dependent two-stream approximation. J. Atmos. Sci., 65:3635–3651, 2008.

    Google Scholar 

  108. M. Lax, W. Cai, and M. Xu. Random Processes in Physics and Finance. Oxford University Press, New York (NY), 2006.

    Google Scholar 

  109. I.L. Katsev and E.P. Zege. Optical transfer function of an intensely scattering layer. Zhurnal Prikladnoi Spektroskopii (English Transl.: Journal of Applied Spectroscopy), 44:552–558, 1986.

    Google Scholar 

  110. M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Govt. Print. Off., Washington (DC), 1 zeroth edition, 1972. [Reprinted by Dover Publications, New York (NY).]

    Google Scholar 

  111. D.M. Winker, R.H. Couch, and M.P. McCormick. An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE, 84:164–180, 1996.

    Google Scholar 

  112. R.A.J. Groenhuis, H.A. Ferwerda, and J.J. Ten Bosch. Scattering and absorption of turbid materials determined from reflection measurements, 1: Theory. Appl. Opt., 22:2456–2462, 1983.

    Google Scholar 

  113. R.A.J. Groenhuis, J.J. Ten Bosch, and H.A. Ferwerda. Scattering and absorption of turbid materials determined from reflection measurements, 2: Measuring method and calibration. Appl. Opt., 22:2463–2467, 1983.

    Google Scholar 

  114. A.B. Davis, S.P. Love, D.M. Winker, and I.N. Polonsky. Multiple-scattering lidar from both sides of the clouds: ground-based with WAIL, space-based with LITE. In M. Hardesty and S. Mayer, editors, Proceedings of 2fourth International Conference on Laser Radar (ILRC 24), Boulder (CO), July 23–27, 2008. NCAR, 2008 [available on CD-ROM].

    Google Scholar 

  115. K.F. Evans and W.J. Wiscombe. An algorithm for generating stochastic cloud fields from radar profile statistics. Atm. Res., 72:263–289, 2004.

    Google Scholar 

  116. K.F. Evans, D. O’Connor, P. Zmarzly, and R.P. Lawson. In situ cloud sensing with multiple scattering cloud lidar: Design and validation of an airborne sensor. J. Atmos. Ocean. Tech., 23:1068–1081, 2006.

    Google Scholar 

  117. R.A. Hanel. Determination of cloud altitude from a satellite. J. Geophys. Res., 66:1300, 1961.

    Google Scholar 

  118. G.A. Yamamoto and D.Q. Wark. Discussion of the letter by R.A. Hanel: determination of cloud altitude from a satellite. J. Geophys. Res., 66:3596, 1961.

    Google Scholar 

  119. R.M. Chapman. Cloud distributions and altitude profiles from a satellite. Planetary and Space Science, 9:70–71, 1962.

    Google Scholar 

  120. F. Saiedy, D.T. Hilleary, and W.A. Morgan. Cloud-top altitude measurements from satellites. Appl. Opt., 4:495–500, 1965.

    Google Scholar 

  121. F. Saiedy, H. Jacobowitz, and D.Q. Wark. On cloud-top determination from Gemini-5. J. Atmos. Sci., 35:63–69, 1967.

    Google Scholar 

  122. M.-L.C. Wu. On cloud-top determination from Gemini-5. J. Climate Appl. Meteor., 24:539–546, 1985.

    Google Scholar 

  123. A. Kuze and K.V. Chance. Analysis of cloud top height and cloud coverage from the o2 A and B bands. J. Geophys. Res., 99:14,481–14,491, 1994.

    Google Scholar 

  124. J. Fisher and H. Grassl. Detection of cloud-top height from backscattered radiances within the oxygen A band, 1, Theory. J. Appl. Meteor., 30:1260–1267, 1991.

    Google Scholar 

  125. J. Fisher, W. Cordes, A. Schmitz-Pfeiffer, W. Renger, and P. Mörl. Detection of cloudtop height from backscattered radiances within the oxygen A band, 2, Measurements. J. Appl. Meteor., 30:1245–1259, 1991.

    Google Scholar 

  126. A. Hayazaka, T. Nakajima, Y. Fujiyoshi, Y. Ishikaza, T. Takeda, and M. Tanaka. Geometrical thickness, liquid water content, and radiative properties of stratocumulus over the Western North Pacific. J. Appl. Met., 34:460–470, 1995.

    Google Scholar 

  127. S. Asano, M. Shiobara, and A. Uchiyama. Estimation of cloud physical parameters from airborne solar spectral reflectance measurements for stratocumulus clouds. J. Atmos. Sci., 52:3556–3576, 1995.

    Google Scholar 

  128. T.G. Adiks and V.I. Dianov-Klokov. Molecular parameters of the oxygen absorption band at 0.7620 μm and their use in calculating the transmission function. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 4:605–609, 1968.

    Google Scholar 

  129. V.I. Dianov-Klokov, E.P. Kropotkina, I.P. Malkov, and O.A. Matveyeva. Absorptionband deformation and the effective path-length of light in clouds. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 6:458–463, 1970.

    Google Scholar 

  130. T.G. Adiks, Yu.S. Georgiyevskiy, M.S. Malkevich, and N.S. Filippova. Atmospheric transmission in the 0.76 μm oxygen band. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 8:210–216, 1972.

    Google Scholar 

  131. V.I. Dianov-Klokov and L.D. Krasnokutskaya. Comparison of observed and calculated effective photon path-length in clouds. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 8:487–492, 1972.

    Google Scholar 

  132. B.A. Kargin, L.D. Krasnokutskaya, and Ye. M. Feygel’son. Reflection and absorption of solar radiant energy by cloud layers. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 8:287–293, 1972.

    Google Scholar 

  133. Ye.I. Grechko, V.I. Dianov-Klokov, and I.P. Malkov. Aircraft measurements of photon paths in reflection and transmission of light by clouds in the 0.76 μm oxygen band. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 9:262–269, 1973.

    Google Scholar 

  134. V.I. Syachinov and Ye.M. Kozlov. Determination of cloud-top altitude from the Cosmos-320 satellite. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 10:582–586, 1974.

    Google Scholar 

  135. M.S. Malkevich, L.U. Chagar, and A.Kh. Shukurov. Corrections for scattering of radiation in clouds in photometric cloud-height determination. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 11:561–564, 1975.

    Google Scholar 

  136. Ye.I. Grechko, V.I. Dianov-Klokov, N.A. Yevstratov, and A.P. Ozerenskiy. Calculation of mean and effective photon paths for a two-layer cloud model with consideration of reflection from the underlying surface. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 12:20–24, 1976.

    Google Scholar 

  137. V.I. Dianov-Klokov. Determination of effective photon path-lengths from the spectral brightness of clouds. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 12:221–224, 1976.

    Google Scholar 

  138. V.I. Dianov-Klokov, N.A. Yevstratov, and A.P. Ozerenskiy. Calculation of radiant energy density and equivalent photon paths for certain cloud models. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 13:217–221, 1977.

    Google Scholar 

  139. Ye.I. Grechko. Measuring the difference in effective paths at two wavelengths in the presence of reflection of light by clouds. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 14:479–481, 1978.

    Google Scholar 

  140. V.V. Badayev and M.S. Malkevich. On the possibility of determining the vertical profiles of aerosol attenuation using satellite measurements of reflected radiation in the 0.76 μm oxygen band. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 14:722–727, 1978.

    Google Scholar 

  141. V.V. Badayev and Ye.M. Kozlov. On a determination of the optical parameters of the atmosphere from reflected radiation measurements in the 0.76 μm oxygen absorption band. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 16:375–377, 1980.

    Google Scholar 

  142. Ye.I. Grechko and V.I. Dianov-Klokov. Spectroscopic measurements of the ‘additional absorbing mass’ in the cloudy atmosphere of the intertropical convergence zone. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 17:153–156, 1981.

    Google Scholar 

  143. L.M. Romanova and Ye.A. Ustinov. The generalized transfer equation for the distribution of photon paths and the problem of vertically inhomogeneous gas absorption in the atmosphere. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 18:186–192, 1982.

    Google Scholar 

  144. Ye.I. Grechko, S.V. Dvoryashin, and A.Ya. Red’ko. Evaluation of effect of scattering indicatrix on the mean photon ranges in clouds. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 18:854–856, 1982.

    Google Scholar 

  145. Ye.I. Grechko and V.I. Dianov-Klokov. Spectroscopic measurements of the ‘additional absorbing mass’ in solid and broken cloud cover. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 19:117–121, 1983.

    Google Scholar 

  146. V.N. Skorinov and G.A. Titov. Mean photon path-lengths for broken clouds. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 20: 377–381, 1984.

    Google Scholar 

  147. I.S. Gusev and S.V. Dvoryashin. Recovery of the effective photon path-length in cloud from its spectral brightness. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 26:536–539, 1990.

    Google Scholar 

  148. G.L. Stephens. Remote Sensing of the Lower Atmosphere: An Introduction. Oxford University Press, New York (NY), 1994.

    Google Scholar 

  149. C. Moroney, R. Davies, and J.-P. Muller. Operational retrieval of cloud-top heights using MISR data. IEEE Trans. Geosci. Remote Sensing, 40:1532–1540, 2002.

    Google Scholar 

  150. D. O’Brien and R.M. Mitchell. Error estimates for the retrieval of cloud top pressure using absorption in the A-band of oxygen. J. Appl. Meteor., 31:1179–1192, 1992.

    Google Scholar 

  151. D. O’Brien, R.M. Mitchell, S.A. English, and G.A. Da Costa. Airborne measurements of air mass from O2 A-band absorption spectra. J. Atmos. Oceanic Tech., 15:1272–1286, 1999.

    Google Scholar 

  152. G.L. Stephens and A.K. Heidinger. Line absorption in a scattering atmosphere. I: Theory. J. Atmos. Sci., 57:1599–1614, 2000.

    Google Scholar 

  153. A.K. Heidinger and G.L. Stephens. Molecular line absorption in a scattering atmosphere. II: Application to remote sensing in the O2 A-band. J. Atmos. Sci., 57:1615–1634, 2000.

    Google Scholar 

  154. A.A. Kokhanovsky and V.V. Rozanov. The physical parameterization of the top-of-atmosphere reflection function for a cloudy atmosphere — underlying surface system: the oxygen A-band study. J. Quant. Spectr. Rad. Transfer, 85:35–55, 2004.

    Google Scholar 

  155. V.V. Rozanov and A.A. Kokhanovsky. Semi-analytical cloud retrieval algorithm as applied to the cloud top altitude and the cloud geometrical thickness determination from top-of-atmosphere reflectance measurements in the oxygen A-band. J. Geophys. Res., D109:5202, doi:10.1029/2003JD004104, 2004.

    Google Scholar 

  156. A.K. Heidinger and G.L. Stephens. Molecular line absorption in a scattering atmosphere. III: Path length characteristics and effects of spatially heterogeneous clouds. J. Atmos. Sci., 59:1641–1654, 2002.

    Google Scholar 

  157. G.L. Stephens, A.K. Heidinger, and P.M. Gabriel. Photon paths and cloud heterogeneity: an observational strategy to assess effects of 3D geometry on radiative transfer. In A. Marshak and A.B. Davis, editors, 3D Radiative Transfer in Cloudy Atmospheres, chapter 13, pages 587–616. Springer-Verlag, Heidelberg, Germany, 2005.

    Google Scholar 

  158. A.A. Kokhanovsky, B. Mayer, V.V. Rozanov, K. Wapler, J.P. Burrows, and U. Schumann. The influence of broken cloudiness on cloud top height retrievals using nadir observations of backscattered solar radiation in the oxygen A-band. J. Quant. Spectr. Rad. Transfer, 103:460–477, 2007.

    Google Scholar 

  159. K. Pfeilsticker, F. Erle, O. Funk, H. Veitel, and U. Platt. First geometrical path-lengths probability density function derivation of the skylight from spectroscopically highly resolving oxygen A-band observations, 1. Measurement technique, atmospheric observations, and model calculations. J. Geophys. Res., D103:11,483–11,504, 1998.

    Google Scholar 

  160. Q. Min and L. Harrison. Joint statistics of photon path-length and cloud optical depth. Geophys. Res. Lett., 26:1425–1428, 1999.

    Google Scholar 

  161. Q.-L. Min, L.C. Harrison, and E.E. Clothiaux. Joint statistics of photon path-length and cloud optical depth: Case studies. J. Geophys. Res., D106:7375–7385, 2001.

    Google Scholar 

  162. Q.-L. Min and E.E. Clothiaux. Photon path-length distributions inferred from rotating shadowband spectroradiometer measurements at the Atmospheric Radiation Measurement Program Southern Great Plains site. J. Geophys. Res., D108:4456–4464, 2003.

    Google Scholar 

  163. Q.-L. Min, L.C. Harrison, P. Kiedron, J. Berndt, and E. Joseph. A high-resolution oxygen A-band and water vapor band spectrometer. J. Geophys. Res., D109:2202–2210, 2004.

    Google Scholar 

  164. K. Pfeilsticker. First geometrical path-lengths probability density function derivation of the skylight from spectroscopically highly resolving oxygen A-band observations, 2. Derivation of the Lévy-index for the skylight transmitted by mid-latitude clouds. J. Geophys. Res., D104:4101–4116, 1999.

    Google Scholar 

  165. T. Scholl, K. Pfeilsticker, A.B. Davis, H.K. Baltink, S. Crewell, U. Löhnert, C. Simmer, J. Meywerk, and M. Quante. Path length distributions for solar photons under cloudy skies: comparison of measured first and second moments with predictions from classical and anomalous diffusion theories. J. Geophys. Res., D111:12,211–12,226, 2006.

    Google Scholar 

  166. H.C. van de Hulst. Multiple Light Scattering (Tables, Formulae and Applications), Volumes 1 & 2. Academic Press, San Diego (CA), 1980.

    Google Scholar 

  167. R.W. Portmann, S. Solomon, R.W. Sanders, and J.S. Daniel. Cloud modulation of zenith sky oxygen path-lengths over Boulder, Colorado: measurement versus model. J. Geophys. Res., D106:1139–1155, 2001.

    Google Scholar 

  168. K. Stamnes, S.-C. Tsay, W.J. Wiscombe, and K. Jayaweera. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27:2502–2509, 1988.

    Google Scholar 

  169. J.S. Daniel, R.W. Portmann, H.L. Miller, S. Solomon, R.W. Sanders, A.O. Langford, C.S. Eubank, R. Schofield, D.D. Turner, and M.D. Shupe. Cloud property estimates from zenith spectral measurements of scattered sunlight between 0.9 and 1.7 μm. J. Geophys. Res., D111:16208, doi:10.1029/2005JD006641, 2006.

    Google Scholar 

  170. A. Marshak, A. Davis, W.J. Wiscombe, and R.F. Cahalan. Radiative smoothing in fractal clouds. J. Geophys. Res., D100:26,247–26,261, 1995.

    Google Scholar 

  171. D. Crisp, R.M. Atlas, F.-M. Bréon, L.R. Brown, J.P. Burrows, P. Ciais, B.J. Connor, S.C. Doney, I.Y. Fung, D.J. Jacob, C.E. Miller, D. O’Brien, S. Pawson, J.T. Randerson, P. Rayner, R.J. Salawitch, S.P. Sander, B. Sen, G.L. Stephens, P.P. Tans, G.C. Toon, P.O. Wennberg, S.C. Wofsy, Y.L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll. The Orbiting Carbon Observatory (OCO) mission. Adv. Space Res., 34:700–709, 2004.

    Google Scholar 

  172. C. Vanbauce, R. Cadet, and R.T. Marchand. Comparison of POLDER apparent and corrected oxygen pressure to ARM/MMCR cloud boundary pressures. Geophys. Res. Lett., 30:1212, doi:10.1029/2002GL016449, 2003.

    Google Scholar 

  173. V.V. Rozanov, A.A. Kokhanovsky, and J.P. Burrows. The determination of cloud altitudes using GOME reflectance spectra: multilayered cloud systems. IEEE Trans. Geosc. and Remote Sens., 42:1009–1017, 2004.

    Google Scholar 

  174. A.A. Kokhanovsky, V.V. Rozanov, W. von Hoyningen-Huene, H. Bovensmann, J.P. Burrows, and H.K. Baltink. The determination of cloud altitudes using SCIAMACHY onboard ENVISAT. IEEE Geosc. and Remote Sens. Lett., 1:211–214, 2004.

    Google Scholar 

  175. C. Flesia and P. Schwendimann (editors). Special section on MUltiple SCattering in Lidar Experiments (MUSCLE). Applied Physics B — Lasers and Optics, B60:315–362, 1995.

    Google Scholar 

  176. A. Davis, D.M. Winker, A. Marshak, J.D. Spinhirne, R.F. Cahalan, S.P. Love, S.H. Melfi, and W.J. Wiscombe. Retrieval of physical and optical cloud thicknesses from space-borne and wide-angle lidar. In A. Ansmann, R. Neuber, P. Rairoux, and U. Wadinger, editors, Advances in Atmospheric Remote Sensing with Lidar, pages 193–196. Springer-Verlag, Heidelberg, Germany, 1997 [selected papers presented at the 18th International Laser Radar Conference (ILRC18), Berlin (Germany), 22–26 July, 1996].

    Google Scholar 

  177. L.R. Bissonnette and D.L. Hutt. Multiple scattering lidar. Appl. Opt., 29:5045–5048, 1990.

    Google Scholar 

  178. D.L. Hutt, L.R. Bissonnette, and L. Durand. Multiple field of view lidar returns for atmospheric aerosols. Appl. Opt., 33:2338–2348, 1994.

    Google Scholar 

  179. L.R. Bissonnette and D.L. Hutt. Multiply scattered aerosol lidar returns: Inversion method and comparison with in situ measurements. Appl. Opt., 34:6959–6975, 1995.

    Google Scholar 

  180. L.R. Bissonnette. Multiple-scattering lidar equation. Appl. Opt., 35:6449–6465, 1996.

    Google Scholar 

  181. L.R. Bissonnette, G. Roy, L. Poutier, S. Cober, and G. Isaac. Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements. Appl. Opt., 41:6307–6324, 2002.

    Google Scholar 

  182. G. Roy, L.R. Bissonnette, C. Bastille, and G. Vallée. Estimation of cloud droplet size density distribution from multiple-field-of-view lidar returns. Optical Engineering, 36:3404–3415, 1997.

    Google Scholar 

  183. G. Roy, L.R. Bissonnette, C. Bastille, and G. Vallée. Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation. Appl. Opt., 38:5202–5211, 1999.

    Google Scholar 

  184. L.R. Bissonnette, G. Roy, and N. Roy. Multiple-scattering-based lidar retrieval: method and results of cloud probings. Appl. Opt., 44:5565–5581, 2005.

    Google Scholar 

  185. J.D. Spinhirne. Micropulse lidar. IEEE Trans. Geosc. Remote Sensing, 31:48–55, 1993.

    Google Scholar 

  186. E.W. Eloranta. Practical model for the calculation of multiply scattered lidar returns. Appl. Opt., 37:2464–2472, 1998.

    Google Scholar 

  187. R.J. Hogan. Fast lidar and radar multiple-scattering models, Part 1: Small-angle scattering using the photon variance-covariance method. J. Atmos. Sci., 65:3621–3635, 2008.

    Google Scholar 

  188. D. Jette. Electron dose calculation using multiple-scattering theory: A new theory of multiple scattering. Med. Phys., 23:459–477, 1996.

    Google Scholar 

  189. C. Borgers and E.W. Larsen. On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport. Med. Phys., 23:1749–1759, 1996.

    Google Scholar 

  190. G.C. Pomraning. A non-Gaussian treatment of radiation pencil beams. Nucl. Sci. Eng., 127:182–198, 1997.

    Google Scholar 

  191. M. Asadzadeh. Streamline diffusion methods for Fermi and Fokker-Planck equations. Transp. Theory and Stat. Phys., 26:319–340, 1997.

    Google Scholar 

  192. A.J. Prinja. Pencil beam transport in a random medium using the Fermi transport equation. Transp. Theory and Stat. Phys., 27:667–679, 1998.

    Google Scholar 

  193. A.M. Belyantsev, L.S. Dolin, and V.A. Savel’ev. On the propagation of light impulses of small duration in a turbid medium. Izvestiya Vysshikh Uchebnykh Zavedenii Radiofizika, 4:489–497, 1967 [in Russian].

    Google Scholar 

  194. L.M. Romanova. Nonstationary light field in the boundary layer of turbid medium with strongly anisotropic scattering illuminated by the narrow beam. Izv. Ak. Nauk SSSR, Fiz. Atm. Okeana, 6:489–498, 1970 [in Russian].

    Google Scholar 

  195. J.A. Weinman and S.T. Shipley. Effects of multiple scattering on laser pulses transmitted through clouds. J. Geophys. Res., 77:7123–7128, 1972.

    Google Scholar 

  196. L.S. Dolin and V.A. Savel’ev. Characteristics of back scattering signal at pulse radiation of turbid medium by a narrow directional light beam. Izv. Ak. Nauk SSSR, Fiz. Atm. Okeana, 7:505–510, 1971 [in Russian].

    Google Scholar 

  197. I.L. Katsev. The reflection of a narrow light beam from a homogeneous isotropically scattering medium. Izv. Ak. Nauk SSSR, Fiz. Atm. Okeana, 10:425–430, 1974 [in Russian].

    Google Scholar 

  198. J.A. Weinman. Effects of multiple scattering on light pulses reflected by turbid atmospheres. J. Atmos. Sci., 33:1763–1771, 1976.

    Google Scholar 

  199. K.E. Kunkel and J.A. Weinman. Monte carlo analysis of multiply scattered lidar returns. J. Atmos. Sci., 33:1772–1781, 1976.

    Google Scholar 

  200. S.D. Miller and G.L. Stephens. Multiple scattering effects in the lidar pulse stretching problem. J. Geophys. Res., D104:22,205–22,219, 1999.

    Google Scholar 

  201. A.B. Davis, D.M. Winker, and M.A. Vaughan. First retrievals of dense cloud properties from off-beam/multiple-scattering lidar data collected in space. In A. Dabas and J. Pelon, editors, Laser Remote Sensing of the Atmosphere: Selected Papers from the 2 zeroth International Conference on Laser Radar, Vichy (France), July 9–14, 2000, pages 35–38, Palaiseau, France, 2001. École Polytechnique.

    Google Scholar 

  202. R.F. Cahalan, M.J. McGill, J. Kolasinski, T. Várnai, and K. Yetzer. THOR, cloud THickness from Offbeam lidar Returns. J. Atmos. Ocean. Tech., 22:605–627, 2005.

    Google Scholar 

  203. A. Davis, A. Marshak, W.J. Wiscombe, and R.F. Cahalan. Multifractal characterizations of non-stationarity and intermittency in geophysical fields: Observed, retrieved, or simulated. J. Geophys. Res., D99:8055–8072, 1994.

    Google Scholar 

  204. A. Davis, A. Marshak, W.J. Wiscombe, and R.F. Cahalan. Scale-invariance in liquid water distributions in marine stratocumulus, Part I, Spectral properties and stationarity issues. J. Atmos. Sci., 53:1538–1558, 1996.

    Google Scholar 

  205. A. Davis, A. Marshak, H. Gerber, and W.J. Wiscombe. Horizontal structure of marine boundary-layer clouds from cm-to km-scales. J. Geophys. Res., D104:6123–6144, 1999.

    Google Scholar 

  206. L.S. Dolin. Passage of a pulsed light signal through an absorbing medium with strongly anisotropic scattering. Izvestiya Vysshikh Uchebnykh Zavedenii Radiofizika (Engl. Transl.: Radiophysics and Quantum Electronics), 26:220–228, 1983.

    Google Scholar 

  207. E.P. Zege, I.L. Katsev, and A.I. Kolesnik. Integral characteristics of time deformation of a light pulse in a scattering medium. Izv. Ak. Nauk SSSR, Fiz. Atm. Okeana, 24:1163–1169, 1988 [in Russian].

    Google Scholar 

  208. T. Nakajima and M.D. King. Determination of optical thickness and effective radius of clouds from reflected solar radiation measurements: Part I: Theory. J. Atmos. Sci., 47:1878–1893, 1990.

    Google Scholar 

  209. T. Nakajima, M.D. King, J.D. Spinhirne, and L.F. Radke. Determination of optical thickness and effective radius of clouds from reflected solar radiation measurements: Part II: Marine stratoculmulus observations. J. Atmos. Sci., 48:728–750, 1991.

    Google Scholar 

  210. S. Platnick, M.D. King, S.A. Ackerman, W.P. Menzel, B.A. Baum, J.C. Riedi, and R.A. Frey. The MODIS cloud products: algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41:459–473, 2003.

    Google Scholar 

  211. R. Davies. 3D radiative transfer in satellite remote sensing of cloud properties. In A. Marshak and A.B. Davis, editors, 3D Radiative Transfer in Cloudy Atmospheres, chapter 11, pages 532–541. Springer-Verlag, Heidelberg, Germany, 2005.

    Google Scholar 

  212. R.F. Cahalan, W. Ridgway, W.J. Wiscombe, T.L. Bell, and J.B. Snider. The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51:2434–2455, 1994.

    Google Scholar 

  213. R.F. Cahalan, W. Ridgway, W.J. Wiscombe, S. Gollmer, and Harshvardhan. Independent pixel and Monte Carlo estimates of stratocumulus albedo. J. Atmos. Sci., 51:3776–3790, 1994.

    Google Scholar 

  214. T. Várnai. Influence of three-dimensional radiative effects on the spatial distribution of shortwave cloud reflection. J. Atmos. Sci., 57:216–229, 2000.

    Google Scholar 

  215. T. Várnai and A. Marshak. A method for analyzing how various parts of clouds influence each other’s brightness. J. Geophys. Res., D108:4706, doi:10.1029/2003JD003561, 2003.

    Google Scholar 

  216. H.W. Barker. A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds — Part 1, Methodology and homogeneous biases. J. Atmos. Sci. 53:2289–2303, 1996.

    Google Scholar 

  217. L. Oreopoulos and H.W. Barker. Accounting for subgrid-scale cloud variability in a multi-layer, 1D solar radiative transfer algorithm. Quart. J. Roy. Meteorol. Soc., 125:301–330, 1999.

    Google Scholar 

  218. A.A. Kokhanovsky. The influence of the horizontal inhomogeneity on radiative characteristics of clouds: an asymptotic case study. IEEE Trans. Geosc. and Remote Sens., 41:817–825, 2003.

    Google Scholar 

  219. A.A. Kokhanovsky. Statistical properties of light reflected and transmitted by a thick horizontally inhomogeneous turbid layer. J. Opt. Soc. Am. A, 22:2419–2423, 2005.

    Google Scholar 

  220. V.V. Sobolev. Light Scattering in Planetary Atmospheres. Nauka, Moscow, FSU, 1972.

    Google Scholar 

  221. H.W. Barker, B.A. Wielicki, and L. Parker. A parameterization for computing gridaveraged solar fluxes for inhomogeneous marine boundary layer clouds — Part 2, Validation using satellite data. J. Atmos. Sci. 53:2304–2316, 1996.

    Google Scholar 

  222. A. Marshak, A. Davis, R.F. Cahalan, and W.J. Wiscombe. Nonlocal independent pixel approximation: direct and inverse problems. IEEE Trans. Geosc. and Remote Sens., 36:192–205, 1998.

    Google Scholar 

  223. G.L. Stephens. Radiative transfer through arbitrary shaped optical media, Part 1 — A general method of solution. J. Atmos. Sci., 45:1818–1836, 1988.

    Google Scholar 

  224. A. Marshak, A. Davis, W.J. Wiscombe, and G. Titov. The verisimilitude of the independent pixel approximation used in cloud remote sensing. Remote Sens. Environ., 52:72–78, 1995.

    Google Scholar 

  225. A. Davis, A. Marshak, R.F. Cahalan, and W.J. Wiscombe. The Landsat scale break in stratocumulus as a three-dimensional radiative transfer effect: implications for cloud remote sensing. J. Atmos. Sci. 54:241–260, 1997.

    Google Scholar 

  226. P. Zuidema and K.F. Evans. On the validity of the Independent Pixel Approximation for the boundary layer clouds observed during ASTEX. J. Geophys. Res., D103:6059–6074, 1998.

    Google Scholar 

  227. L. Oreopoulos, A. Marshak, R.F. Cahalan, and G. Wen. Cloud three-dimensional effects evidenced in Landsat spatial power spectra and autocorrelation function. J. Geophys. Res., D105:14,777–14,788, 2000.

    Google Scholar 

  228. R.F. Cahalan. Bounded cascade clouds: Albedo and effective thickness. Nonlinear Proc. Geophys., 1:156–167, 1994.

    Google Scholar 

  229. A. Marshak and A.B. Davis. Scale-by-scale analysis and fractal cloud models. In A. Marshak and A.B. Davis, editors, 3D Radiative Transfer in Cloudy Atmospheres, pages 653–663. Springer-Verlag, Heidelberg, Germany, 2005.

    Google Scholar 

  230. A.B. Davis, A. Marshak, and E.E. Clothiaux. Anisotropic multi-resolution analysis in 2D, Application to long-range correlations in cloud mm-radar fields. Proc. SPIE, 3723:194–207, 1999.

    Google Scholar 

  231. A.N. Tikhonov and V.Y. Arsenin. Solution of Ill-Posed Problems. Scripta Series in Mathematics. V.H. Winston & Sons, Washington (DC), 1977 [translated from Russian, preface by translation editor Fritz John].

    Google Scholar 

  232. J.C. Chiu, A. Marshak, W.J. Wiscombe, S.C. Valencia, and E.J. Welton. Cloud optical depth retrievals from solar background signals of micropulse lidars. IEEE Geosc. Remote Sensing Lett., 4:456–460, 2007.

    Google Scholar 

  233. C.M.R. Platt, W.H. Hunt, D.M. Winker, and M.A. Vaughan. Measurement of cloud solar reflected radiance and extinction from space lidar. Proc. SPIE, 3504:542–549, 1998.

    Google Scholar 

  234. Y. Yang, A. Marshak, J.C. Chiu, W.J. Wiscombe, S.P. Palm, A.B. Davis, D.A. Spangenberg, L. Nguyen, J. Spinhirne, and P. Minnis. Calibration of solar background signal for retrievals of cloud optical depth from the Geoscience Laser Altimeter System (GLAS). J. Atmos. Sci., 65:3531–3527, doi:10.1175/2008JAS2744.1, 2008.

    Google Scholar 

  235. A. Marshak, Yu. Knyazikhin, A. Davis, W.J. Wiscombe, and P. Pilewskie. Cloudvegetation interaction: use of normalized difference cloud index for estimation of cloud optical thickness. Geophys. Res. Lett., 27:1695–1698, 2000.

    Google Scholar 

  236. C.v. Savigny, O. Funk, U. Platt, and K. Pfeilsticker. Radiative smoothing in zenithscattered sky light transmitted through clouds to the ground. Geophys. Res. Lett., 26:2949–2952, 1999.

    Google Scholar 

  237. C.v. Savigny, A.B. Davis, O. Funk, and K. Pfeilsticker. Large-scale stationarity in time series of zenith radiance under cloudy skies. Geophys. Res. Lett., 29:1825, doi:10.1029/2001GL014153, 2002.

    Google Scholar 

  238. M.A. Box, S.A.W. Gerstl, and C. Simmer. Computation of atmospheric radiative effects via perturbation theory. Beitr. Phys. Atmosph., 62:193–199, 1988.

    Google Scholar 

  239. M.A. Box, M. Keevers, and B.H.J. McKellar. On the perturbation series for radiative effects. J. Quant. Spect. Rad. Trans., 39:219–223, 1989.

    Google Scholar 

  240. M.A. Box. Radiative perturbation theory: a review. Environmental Modelling & Software, 17:95–106, 2002.

    Google Scholar 

  241. I.N. Polonsky and M.A. Box. General perturbation technique for the calculation of radiative effects in scattering and absorbing media. J. Opt. Soc. Am. A, 19:2281–2292, 2002.

    Google Scholar 

  242. I.N. Polonsky, M.A. Box, and A.B. Davis. Radiative transfer through inhomogeneous turbid media: implementation of the adjoint perturbation approach at the first-order. J. Quant. Spectrosc. Radiat. Transfer, 78:85–98, 2003.

    Google Scholar 

  243. M.A. Box, I.N. Polonsky, and A.B. Davis. Higher-order perturbation theory applied to radiative transfer in non-plane-parallel media. J. Quant. Spectrosc. Radiat. Transfer, 78:105–118, 2003.

    Google Scholar 

  244. I.N. Polonsky, A.B. Davis, and M.A. Box. Radiative transfer in 3D clouds: a perturbation theoretical approach. In Proceedings of 15th Atmospheric Radiation Measurement (ARM) Program Science Team Meeting, Daytona Beach (Fl), March 14–18, 2005. US Department of Energy, 2005 [available on-line at http://www.arm.gov/publications/proceedings/conf15/].

    Google Scholar 

  245. G.I. Marchuk. Adjoint Equations and Analysis of Complex Systems. Kluwer Academic, Norwell (MA), 1995.

    Google Scholar 

  246. R.F. Cahalan, L. Oreopoulos, A. Marshak, K.F. Evans, A.B. Davis, R. Pincus, K. Yetzer, B. Mayer, R. Davies, T.P. Ackerman, H.W. Barker, E.E. Clothiaux, R.G. Ellingson, M.J. Garay, E. Kassianov, S. Kinne, A. Macke, W. O’Hirok, P.T. Partain, S.M. Prigarin, A.N. Rublev, G.L. Stephens, F. Szczap, E.E. Takara, T. Várnai, G. Wen, and T.B. Zhuravleva. The international Intercomparison of 3D Radiation Codes (I3RC): Bringing together the most advanced radiative transfer tools for cloudy atmospheres. Bull. Amer. Meteor. Soc., 86:1275–1293, 2005.

    Google Scholar 

  247. F. Parol, J.C. Buriez, C. Vanbauce, J. Riedi, L.C. Labonnote, M. Doutriaux-Boucher, M. Vesperini, G. Sèze, P. Couvert, M. Viollier, and F.-M. Bréon. Capabilities of multiangle polarization cloud measurements from satellite: POLDER results. Adv. Space Res., 33:1080–1088, 2004.

    Google Scholar 

  248. V.V. Rozanov and A.A. Kokhanovsky. The solution of the vector radiative transfer equation using the discrete ordinates technique: selected applications. Atmos. Res., 79:241–265, 2006.

    Google Scholar 

  249. A. Marshak and A.B. Davis. Horizontal fluxes and radiative smoothing. In A. Marshak and A.B. Davis, editors, 3D Radiative Transfer in Cloudy Atmospheres, chapter 12, pages 543–586. Springer-Verlag, Heidelberg, Germany, 2005.

    Google Scholar 

  250. C. Chai, Y. Chen, P. Li, and Q. Luo. Improved steady-state diffusion approximation with an anisotropic point-source and the δ-Eddington phase function. Appl. Opt., 46:4843–4851, 2007.

    Google Scholar 

  251. T. Várnai and R.F. Cahalan. Potential for airborne offbeam lidar measurements of snow and sea ice thickness. J. Geophys. Res., C112:12S90, doi:10.1029/2007JC004091, 2007.

    Google Scholar 

  252. S.Y. Kotchenova, N.V. Shabanov, Y. Knyazikhin, A.B. Davis, R. Dubayah, and R.B. Myneni. Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest biomass. J. Geophys. Res., D108:4484, doi:1029/2002JD003288, 2003.

    Google Scholar 

  253. P. Kollias, E.E. Clothiaux, M.A. Miller, B.A. Albrecht, G.L. Stephens, and T.P. Ackerman. Millimeter-wavelength radars: new frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88:1608–1618, 2007.

    Google Scholar 

  254. E.E. Clothiaux, M.A. Miller, B.A. Albrecht, T.P. Ackerman, J. Verlinde, D.M. Babb, R.M. Peters, and W.J. Syrett. An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. and Oceanic Technol., 12:201–229, 1995.

    Google Scholar 

  255. A. Yodh and B. Chance. Spectroscopy/imaging with diffusing light. Phys. Today, 48:34–40, 1995.

    Google Scholar 

  256. A. Klose. Radiative transfer of luminescence light in biological tissue. In A.A. Kokhanovsky, editor, Light Scattering Reviews, volume 4, chapter 6, pages 293–346. Springer-Praxis, Chichester, UK, 2009.

    Google Scholar 

  257. A. Einstein. On the motion, required by the molecular-kinetic theory of heat, of particles suspended in a fluid at rest. Ann. Phys. (Leipzig), 17:549–560, 1905 [Reprinted by Dover Publications, New York (NY), in Investigations on the Theory of the Brownian Movement (1956).]

    Google Scholar 

  258. S. Redner. A Guide to First-Passage Processes. Cambridge University Press, Cambridge, UK, 2001.

    Google Scholar 

  259. S. Chandrasekhar. Stochastic problems in physics and astronomy. Rev. Mod. Phys., 15:1–89, 1943.

    Google Scholar 

  260. R. Pincus, H.W. Barker, and J.J. Morcrette. A new radiative transfer model for use in GCMs. J. Geophys. Res., D108:4376–4379, 2003.

    Google Scholar 

  261. P. Räisäsen and H.W. Barker. Evaluation and optimization of sampling errors for the Monte Carlo Independent Column Approximation. Quart. J. Roy. Meteor. Soc., 130:2069–2085, 2005.

    Google Scholar 

  262. P. Lévy. Théorie de l’Addition des Variables Aléatoires. Gauthier Villars, Paris, France, 1937.

    Google Scholar 

  263. G. Samorodnitsky and M.S. Taqqu. Stable Non-Gaussian Random Processes. Chapman & Hall, New York (NY), 1994.

    Google Scholar 

  264. E. Sparre Anderson. On the fluctuations of sums of random variables. Math. Scand., 1:236–285, 1953.

    Google Scholar 

  265. U. Frisch and H. Frisch. Universality in escape from half space of symmetrical random walks. In M.F. Shlesinger, G.M. Zaslavsky, and U. Frisch, editors, Lévy Flights and Related Topics in Physics, pages 262–268. Springer-Verlag, New York (NY), 1995.

    Google Scholar 

  266. M.F. Shlesinger, G.M. Zaslavsky, and U. Frisch, editors. Lévy Flights and Related Topics in Physics. Springer-Verlag, New York (NY), 1995.

    Google Scholar 

  267. A.B. Kostinski. On the extinction of radiation by a homogeneous but spatially correlated random medium: reply to comment. J. Opt. Soc. Amer. A, 19:2521–2525, 2002.

    Google Scholar 

  268. A.G. Borovoi. On the extinction of radiation by a homogeneous but spatially correlated random medium: comment. J. Opt. Soc. Amer. A, 19:2517–2520, 2002.

    Google Scholar 

  269. S.V. Buldyrev, M. Gitterman, S. Havlin, A.Ya. Kazakov, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, and G.M. Viswanathan. Properties of Lévy flights on an interval with absorbing boundaries. Physica A, 302:148–161, 2001.

    Google Scholar 

  270. K.S. Miller and B. Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience, New York (NY), 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Davis, A.B., Polonsky, I.N., Marshak, A. (2009). Space-time Green functions for diffusive radiation transport, in application to active and passive cloud probing. In: Kokhanovsky, A.A. (eds) Light Scattering Reviews 4. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74276-0_5

Download citation

Publish with us

Policies and ethics