Advertisement

Target Positioning with Dominant Feature Elements

  • Zhuan Qing Huang
  • Zhuhan Jiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)

Abstract

We propose a dominant-feature based matching method for capturing a target in a video sequence through the dynamic decomposition of the target template. The target template is segmented via intensity bands to better distinguish itself from the local background. Dominant feature elements are extracted from such segments to measure the matching degree of a candidate target via a sum of similarity probabilities. In addition, spatial filtering and contour adaptation are applied to further refine the object location and shape. The implementation of the proposed method has shown its effectiveness in capturing the target in a moving background and with non-rigid object motion.

Keywords

Object detection object tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K., Zhong, Y., Lakshmanan, S.: Object Matching Using Deformable Templates. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(3), 267–278 (1996)CrossRefGoogle Scholar
  2. 2.
    Jurie, F., Dhome, M.: Hyperplane Approximation for Template Matching. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(7), 996–1000 (2002)CrossRefGoogle Scholar
  3. 3.
    Zhong, Y., Jain, A.K., Dubuisson-Jolly, M.P.: Object tracking Using Deformable Templates. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(5), 544–549 (2000)CrossRefGoogle Scholar
  4. 4.
    Isard, M., Blake, A.: CONDENSATION-Conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)CrossRefGoogle Scholar
  5. 5.
    Yusuf, A.S., Kambhamettu, C.: A Coarse-to-Fine Deformable Contour Optimization Framework. IEEE Trans. On Pattern Analysis and Machine Intelligence 25(2), 174–186 (2003)CrossRefGoogle Scholar
  6. 6.
    Zimmer, C., Marin, J.C.O.: Coupled Parametric Active Contours. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(11), 1838–2005 (2005)CrossRefGoogle Scholar
  7. 7.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-Based Object Tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)CrossRefGoogle Scholar
  8. 8.
    Elgammal, A., Duraiswami, R., Davis, L.S.: Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applications to Colour Modelling and Tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(11), 1499–1504 (2003)CrossRefGoogle Scholar
  9. 9.
    Elgammal, A., Duraiswami, R., Davis, L.S.: Probabilistic Tracking in Joint Feature-Spatial Spaces. IEEE Computer Vision and Pattern Recognition 1, 1 (2003)Google Scholar
  10. 10.
    Sheikh, Y., Shah, M.: Bayesian Modelling of Dynamic Scenes for Object Detection. IEEE Trans. on Pattern and Machine Intelligence 27(11), 1778–1792 (2005)CrossRefGoogle Scholar
  11. 11.
    Paragios, N., Deriche, R.: Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(3), 266–280 (2000)CrossRefGoogle Scholar
  12. 12.
    Smith, P., Drummond, T., Cipolla, R.: Layered Motion Segmentation and Depth Ordering by Tracking Edges. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(4), 479–494 (2004)CrossRefGoogle Scholar
  13. 13.
    Huang, Z.Q., Jiang, Z.: An object tracking scheme based on local density. In: Cham, T.-J., Cai, J., Dorai, C., Rajan, D., Chua, T.-S., Chia, L.-T. (eds.) MMM 2007. LNCS, vol. 4351, pp. 166–175. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Cham, T.J., Rehg, J.M.: A Multiple Hypothesis Approach to Figure Tracking. Computer Vision and Pattern Recognition (CVPR 1999), Ft. Collins, CO, pp. 239-245 (June 1999)Google Scholar
  15. 15.
    Huang, Z.Q., Jiang, Z.: Tracking Camouflaged Objects with Weighted Region Consolidation. In: Lovell, B.C., et al. (eds.) DICTA 2005. Proceedings of Digital Image Computing: Technqiues and Application, pp. 161–168. IEEE Press, NJ, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Zhuan Qing Huang
    • 1
  • Zhuhan Jiang
    • 1
  1. 1.School of Computing and Mathematics, University of Western Sydney, NSWAustralia

Personalised recommendations