Skip to main content

Target Positioning with Dominant Feature Elements

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

Abstract

We propose a dominant-feature based matching method for capturing a target in a video sequence through the dynamic decomposition of the target template. The target template is segmented via intensity bands to better distinguish itself from the local background. Dominant feature elements are extracted from such segments to measure the matching degree of a candidate target via a sum of similarity probabilities. In addition, spatial filtering and contour adaptation are applied to further refine the object location and shape. The implementation of the proposed method has shown its effectiveness in capturing the target in a moving background and with non-rigid object motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, A.K., Zhong, Y., Lakshmanan, S.: Object Matching Using Deformable Templates. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(3), 267–278 (1996)

    Article  Google Scholar 

  2. Jurie, F., Dhome, M.: Hyperplane Approximation for Template Matching. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(7), 996–1000 (2002)

    Article  Google Scholar 

  3. Zhong, Y., Jain, A.K., Dubuisson-Jolly, M.P.: Object tracking Using Deformable Templates. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(5), 544–549 (2000)

    Article  Google Scholar 

  4. Isard, M., Blake, A.: CONDENSATION-Conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)

    Article  Google Scholar 

  5. Yusuf, A.S., Kambhamettu, C.: A Coarse-to-Fine Deformable Contour Optimization Framework. IEEE Trans. On Pattern Analysis and Machine Intelligence 25(2), 174–186 (2003)

    Article  Google Scholar 

  6. Zimmer, C., Marin, J.C.O.: Coupled Parametric Active Contours. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(11), 1838–2005 (2005)

    Article  Google Scholar 

  7. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-Based Object Tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)

    Article  Google Scholar 

  8. Elgammal, A., Duraiswami, R., Davis, L.S.: Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applications to Colour Modelling and Tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(11), 1499–1504 (2003)

    Article  Google Scholar 

  9. Elgammal, A., Duraiswami, R., Davis, L.S.: Probabilistic Tracking in Joint Feature-Spatial Spaces. IEEE Computer Vision and Pattern Recognition 1, 1 (2003)

    Google Scholar 

  10. Sheikh, Y., Shah, M.: Bayesian Modelling of Dynamic Scenes for Object Detection. IEEE Trans. on Pattern and Machine Intelligence 27(11), 1778–1792 (2005)

    Article  Google Scholar 

  11. Paragios, N., Deriche, R.: Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(3), 266–280 (2000)

    Article  Google Scholar 

  12. Smith, P., Drummond, T., Cipolla, R.: Layered Motion Segmentation and Depth Ordering by Tracking Edges. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(4), 479–494 (2004)

    Article  Google Scholar 

  13. Huang, Z.Q., Jiang, Z.: An object tracking scheme based on local density. In: Cham, T.-J., Cai, J., Dorai, C., Rajan, D., Chua, T.-S., Chia, L.-T. (eds.) MMM 2007. LNCS, vol. 4351, pp. 166–175. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Cham, T.J., Rehg, J.M.: A Multiple Hypothesis Approach to Figure Tracking. Computer Vision and Pattern Recognition (CVPR 1999), Ft. Collins, CO, pp. 239-245 (June 1999)

    Google Scholar 

  15. Huang, Z.Q., Jiang, Z.: Tracking Camouflaged Objects with Weighted Region Consolidation. In: Lovell, B.C., et al. (eds.) DICTA 2005. Proceedings of Digital Image Computing: Technqiues and Application, pp. 161–168. IEEE Press, NJ, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, Z.Q., Jiang, Z. (2007). Target Positioning with Dominant Feature Elements. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics