Skip to main content

Knowledge from Markers in Watershed Segmentation

  • Conference paper
Book cover Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

Abstract

Due to its broad impact in many image analysis applications, the problem of image segmentation has been widely studied. However, there still does not exist any automatic segmentation procedure able to deal accurately with any kind of image. Thus semi-automatic segmentation methods may be seen as an appropriate alternative to solve the segmentation problem. Among these methods, the marker-based watershed has been successfully involved in various domains. In this algorithm, the user may locate the markers, which are used only as the initial starting positions of the regions to be segmented. We propose to base the segmentation process also on the contents of the markers through a supervised pixel classification, thus resulting in a knowledge-based watershed segmentation where the knowledge is built from the markers. Our contribution has been evaluated through some comparative tests with some state-of-the-art methods on the well-known Berkeley Segmentation Dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rivest, J., Beucher, S., Delhomme, J.: Marker-controlled segmentation: an application to electrical borehole imaging. Journal of Electronic Imaging 1(2), 136–142 (1992)

    Article  Google Scholar 

  2. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)

    Article  Google Scholar 

  3. Beare, R.: A locally constrained watershed transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(7), 1063–1074 (2006)

    Article  Google Scholar 

  4. Li, X., Hamameh, G.: Modeling prior shape and appearance knowledge in watershed segmentation. In: Canadian Conference on Computer Vision (2005)

    Google Scholar 

  5. Derivaux, S., Lefèvre, S., Wemmert, C., Korczak, J.: Watershed segmentation of remotely sensed images based on a supervised fuzzy pixel classification. In: IEEE International Geosciences And Remote Sensing Symposium, Denver, USA (July 2006)

    Google Scholar 

  6. Grau, V., Mewes, A., Alcaniz, M., Kikinis, R., Warfield, S.: Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging 23(4), 447–458 (2004)

    Article  Google Scholar 

  7. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: IEEE International Conference on Computer Vision. vol. 2, pp. 416–423 (July 2001)

    Google Scholar 

  8. Micusik, B., Hanbury, A.: Steerable semi-automatic segmentation of textured images. In: Scandinavian Conference on Image Analysis (2005)

    Google Scholar 

  9. Aptoula, E., Lefèvre, S.: Spatial morphological covariance applied to texture classification. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds.) MRCS 2006. LNCS, vol. 4105, pp. 522–529. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Lefèvre, S.: Extending morphological signatures for visual pattern recognition. In: IAPR International Workshop on Pattern Recognition in Information Systems (June 2007)

    Google Scholar 

  11. Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognition (to appear, 2007), doi:10.1016/j.patcog.2007.02.004

    Google Scholar 

  12. Micusik, B., Hanbury, A.: Automatic image segmentation by positioning a seed. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, Springer, Heidelberg (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lefèvre, S. (2007). Knowledge from Markers in Watershed Segmentation. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics