Deterministic and Stochastic Methods for Gaze Tracking in Real-Time

  • Javier Orozco
  • F. Xavier Roca
  • Jordi Gonzàlez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)


Psychological evidence demonstrates how eye gaze analysis is requested for human computer interaction endowed with emotion recognition capabilities. The existing proposals analyse eyelid and iris motion by using colour information and edge detectors, but eye movements are quite fast and difficult for precise and robust tracking. Instead, we propose to reduce the dimensionality of the image-data by using multi-Gaussian modelling and transition estimations by applying partial differences. The tracking system can handle illumination changes, low-image resolution and occlusions while estimating eyelid and iris movements as continuous variables. Therefore, this is an accurate and robust tracking system for eyelids and irises in 3D for standard image quality.


Appearance Model Warping Function Gaussian Parameter Tracking Vector Eyelid Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernogger, S., Yin, L., Basu, A., Pinz, A.: Eye tracking and animation for mpeg-4 coding. In: Proceedings of the 14th International Conference on Pattern Recognition, vol. 2, pp. 1281–1284 (1998)Google Scholar
  2. 2.
    Cootes, T.F., Taylor, C.J.: Statistical Models of Appearance for Computer Vision. Imaging Science and Biomedical Engineering, University of Manchester (2004)Google Scholar
  3. 3.
    Edwards, G., Cootes, T., Taylor, C.: Face recognition using active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 581–695. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Ekman, P., Friesen, V.: Facial action coding system: A technique for the measurement of facial movement. Consulting Psychologists Press, Palo Alto (1978)Google Scholar
  5. 5.
    Huber, P.J.: Robust estimation of a location parameter. The Annals of Mathematical Statistics 35, 73–101 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Liu, H., Wu, Y., Zha, H.: Eye states detection from color facial image sequence. In: Proc. of the 2nd Conference on Image and Graphics, vol. 4875, pp. 693–698 (2002)Google Scholar
  7. 7.
    Moriyama, T., Xiao, J., Cohn, J., Kanade, T.: Meticulously detailed eye model and its application to analysis of facial image. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), 738–752 (2006)CrossRefGoogle Scholar
  8. 8.
    Nocedal, J., Wright, S.: Numerical optimization. Springer, New York (1999)zbMATHGoogle Scholar
  9. 9.
    Tan, H., Zhang, Y.: Detecting eye blink states by tracking iris and eyelids. Pattern Recognition Letters (2005)Google Scholar
  10. 10.
    Tian, Y.L., Kanade, T., Cohn, J.: Dual-state parametric eye tracking. In: International Conference on Automatic Face and Gesture Recognition, pp. 110–115 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Javier Orozco
    • 1
  • F. Xavier Roca
    • 1
  • Jordi Gonzàlez
    • 2
  1. 1.Computer Vision Center & Dept. de Ciències de la Computació, Edifici O, Campus UAB, 08193 BellaterraSpain
  2. 2.Institut de Robòtica i Informàtica Industrial (UPC – CSIC), C. Llorens i Artigas 4-6, 08028, BarcelonaSpain

Personalised recommendations