Advertisement

Wavelet-Based Fingerprint Region Selection

  • Almudena Lindoso
  • Luis Entrena
  • Judith Liu-Jimenez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)

Abstract

In this paper a novel approach for detecting fingerprint regions with relevant information is presented. This method is based on the capability of the wavelet transform to select image information considering at the same time spatial and frequency domains. The method has been tested with two fingerprint data bases providing excellent results. With this method the fingerprint core can be detected and also the background can be detached, providing an efficient region selection for any feature extraction method, preprocessing and matching algorithms.

Keywords

Fingerprint Biometrics wavelet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of fingerprint recognition, pp. 83–171. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  2. 2.
    Walker, J.S.: A primer on wavelets and their scientific applications. CRC Press, Boca Raton, USA (1999)zbMATHGoogle Scholar
  3. 3.
    Hatami, S., Hosseini, R., Kamarei, M., Ahmadi, H.: Wavelet based fingerprint image enhancement. In: ISCAS 2005. IEEE International Symposium on Circuits and Systems, vol. 5, pp. 4610–4613 (2005)Google Scholar
  4. 4.
    Wen, M.- l., Liang, Y., Pan, Q., Zhang, H.-C.: A Gabor filter based fingerprint enhancement algorithm in wavelet domain. In: ISCIT 2005. IEEE International Symposium on Communications and Information Technology. pp. 1468–1471 (2005) Google Scholar
  5. 5.
    Zhang, W.-P., Wang, Q.-R., Tang, Y.Y.: A wavelet-based method for fingerprint image enhancement. In: Proceedings of 2002 International Conference on Machine Learning and Cybernetics, vol. 4, pp. 1973–1977 (2002) Google Scholar
  6. 6.
    You, X., Yang, J., Tang, Y.Y., Fang, B., Li, L.: Skeletonization of Fingerprint Based-on Modulus Minima of Wavelet Transform. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Moon, Y.S., Chen, J.S., Chan, K.C., So, K., Woo, K.C.: Wavelet based fingerprint liveness detection. Electronics Letters 41(20), 1112–1113 (2005)CrossRefGoogle Scholar
  8. 8.
    Shuckers, S., Abhyankar, A.: Detecting liveness in fingerprint scanners using wavelets: Results of the test Dataset. In: Maltoni, D., Jain, A.K. (eds.) BioAW 2004. LNCS, vol. 3087, Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Tico, M., Immonen, E., Ramo, P., Kuosmanen, P., Saarinen, J.: Fingerprint recognition using wavelet features. In: ISCAS 2001. The IEEE International Symposium on Circuits and Systems, vol. 2, pp. 21–24 (2001)Google Scholar
  10. 10.
    Tico, M., Kuosmanen, P., Saarinen, J.: Wavelet domain features for fingerprint recognition. Electronics Letters 37(1), 21–22 (2001)CrossRefGoogle Scholar
  11. 11.
    Mokju, M., Abu-Bakar, S.A.R.: Fingerprint matching based on directional image constructed using expanded Haar wavelet transform. In: CGIV 2004. Proceedings of International Conference on Computer Graphics, Imaging and Visualization, pp. 149 - 152 (2004)Google Scholar
  12. 12.
    Fung, Y.-H., Chan, Y.-H.: Fingerprint recognition with improved wavelet domain features. In: Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 33–36 (2004) Google Scholar
  13. 13.
    Selvaraj, H., Arivazhagan, S., Ganesan, L.: Fingerprint verification using wavelet transform. In: ICCIMA 2003. Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications, pp. 430–435 (2003)Google Scholar
  14. 14.
    Huang, K., Aviyente, S.: Choosing best basis in wavelet packets for fingerprint matching. In: ICIP 2004. International Conference on Image Processing, vol. 2, pp. 1249–1252 (2004) Google Scholar
  15. 15.
    Huang, K., Aviyente, S.: Combining generalized Gaussian density and energy distribution in wavelet analysis for texture classification. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 2094–2098 (2004)Google Scholar
  16. 16.
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Almudena Lindoso
    • 1
  • Luis Entrena
    • 1
  • Judith Liu-Jimenez
    • 1
  1. 1.University Carlos III of Madrid, Electronic Technology Department, Butarque 15, 28911 Leganes, MadridSpain

Personalised recommendations