Brain Tissue Classification with Automated Generation of Training Data Improved by Deformable Registration

  • Daniel Schwarz
  • Tomas Kasparek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)


Methods of tissue classification in MRI brain images play a significant role in computational neuroanatomy, particularly in automated ROI-based volumetry. A well-known and very simple k-NN classifier is used here without the need for user input during the training process. The classifier is trained with the use of tissue probability maps which are available in selected digital atlases of brain. The influence of misalignement between images and the tissue probability maps on the classifier’s efficiency is studied in this paper. Deformable registration is used here to align the images and maps. The classifier’s efficiency is tested in an experiment with data obtained from standard Simulated Brain Database.


image analysis image registration MRI computational neuroanatomy brain tissue classification atlas-based segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashburner, J., Friston, K.J.: Voxel-Based Morphometry–The Methods. NeuroImage 11, 805–821 (2000)CrossRefGoogle Scholar
  2. 2.
    Kasparek, T., Prikryl, R., Mikl, M., Schwarz, D., Ceskova, E., Krupa, P.: Prefrontal But Not Temporal Gray Matter Changes in Males with First-Episode Schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry 31, 151–157 (2007)CrossRefGoogle Scholar
  3. 3.
    Sigmundsson, T., et al.: Structural Abnormalities in Frontal, Temporal and Limbic Regions and Interconnecting White Matter Tracts in Schizophrenic Patients with Prominent Negative Symptoms. American Journal of Psychiatry 158, 234–243 (2001)CrossRefGoogle Scholar
  4. 4.
    Friston, K.J., Ashburner, J.: Generative and Recognition Models for Neuroanatomy. NeuroImage 23, 21–24 (2004)CrossRefGoogle Scholar
  5. 5.
    Collins, D.L., Holmes, C.J., Peters, T.M., Evans, A.C.: Automatic 3D Model-based Neuro-anatomical Segmentation. Human Brain Mapping 3, 190–208 (1995)CrossRefGoogle Scholar
  6. 6.
    Zitova, B., Flusser, J.: Image Registration Methods: A Survey. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar
  7. 7.
    Suri, J.S., Wilson, D.L., Laxminarayan, S.: Handbook of Biomedical Image Analysis: Registration Models. Kluwer Academic Plenum Publishers, New York (2005)Google Scholar
  8. 8.
    Rogelj, P., Kovacic, S., Gee, J.C.: Point Similarity Measures for Non-rigid Registration of Multi-modal Data. Computer Vision and Image Understanding 92, 112–140 (2003)CrossRefGoogle Scholar
  9. 9.
    Schwarz, D., Kasparek, T., Provaznik, I., Jarkovsky, J.: A Deformable Registration Method for Automated Morphometry of MRI Brain Images in Neuropsychiatric Research. IEEE Transactions on Medical Imaging 26, 452–461 (2007)CrossRefGoogle Scholar
  10. 10.
    D’Agostino, E., Maes, F., Vandermuelen, D., Suetens, P.: A Viscous Fluid Model for Multimodal Non-rigid Image Registration Using Mutual Information. Medical Image Analysis 7, 541–548 (2003)Google Scholar
  11. 11.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data. IEEE Transactions on Medical Imaging 17, 87–97 (1998)CrossRefGoogle Scholar
  12. 12.
    Cocosco, C.A., Zijdenbos, A.P., Evans, A.C.: A Fully Automatic and Robust Brain MRI Tissue Classification Method. Medical Image Analysis 7, 513–527 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Daniel Schwarz
    • 1
  • Tomas Kasparek
    • 2
  1. 1.Institute of Biostatistics and Analyses, Masaryk University, Kamenice 3, 625 00 BrnoCzech Republic
  2. 2.Clinic of Psychiatry, Faculty Hospital Brno, Jihlavska 20, 625 00 BrnoCzech Republic

Personalised recommendations