Blood Detection in IVUS Images for 3D Volume of Lumen Changes Measurement Due to Different Drugs Administration

  • David Rotger
  • Petia Radeva
  • Eduard Fernández-Nofrerías
  • Josepa Mauri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)


Lumen volume variations is of great interest by the physicians given it reduces the probability of infarction as it increases. In this paper we present a fast and efficient method to detect the lumen borders in longitudinal cuts of IVUS sequences using an AdaBoost classifier trained with several local features assuring their stability. We propose a criterion for feature selection based on stability leave-one-out cross validation. Results on the segmentation of 18 IVUS pullbacks show that the proposed procedure is fast and robust leading to 90% of time reduction with the same characterization performance.


Feature Selection Texture Analysis Local Binary Pattern IVUS Image Medical Image Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sonka, M., Zhang, X., Siebes, M.: Segmentation of intravascular ultrasound images: A knowledge based approach. IEEE Trans. on Medical Imaging 14, 719–732 (1995)CrossRefGoogle Scholar
  2. 2.
    Malik, J., Belongie, S., Shi, T.L.: Contour and texture analysis for image segmentation. International Journal of Computer Vision 43, 7–27 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Puzicha, J., Buhmann, T.H.: Unsupervised texture segmentation in a deterministic anhealing framework. IEEE Trans. on Pattern Recognition and Machine Intelligence 20, 803–818 (1998)CrossRefGoogle Scholar
  4. 4.
    Zhang, X., Sonka, C.M.: Tissue characterization in intravascular ultrasound images. IEEE Trans. on Medical Imaging 17, 889–899 (1998)CrossRefGoogle Scholar
  5. 5.
    von Birgelen, C., van der Lugt, A., Nicosia, A., et al.: Computerized assessment of coronary lumen and atherosclerotic plaque dimensions in three-dimensional intravascular ultrasound correlated with histomorphometry. American Journal of Cardiology 78, 1202–1209 (1996)CrossRefGoogle Scholar
  6. 6.
    Klingensmith, J., Shekhar, R., Vince, D.: Evaluation of three-dimensional segmentation algorithms for identification of luminal and medial-adventitial borders in intravascular ultrasound images. IEEE Trans. on Medical Imaging 19, 996–1011 (2000)CrossRefGoogle Scholar
  7. 7.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: European Conference on Computational Learning Theory, pp. 23–37 (1995)Google Scholar
  8. 8.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features (2001)Google Scholar
  9. 9.
    Daugman, J.: Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two dimensional visual cortical filters. Journal of the Optical Society of America 2, 1160–1169 (1985)Google Scholar
  10. 10.
    Dubes, R., Ohanian, P.: Performance evaluation for four classes of textural features. Pattern Recognition 25, 819–833 (1992)CrossRefGoogle Scholar
  11. 11.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 971–987 (2002)CrossRefGoogle Scholar
  12. 12.
    Poggio, T., Ryan Rifkin, S.M., Niyogi, P.: General conditions for predictivity in learning theory. Letters to Nature 428, 419–422 (2004)CrossRefGoogle Scholar
  13. 13.
    Duch, W., Diercksen, G.H.F.: Feature Space Mapping as a universal adaptive system. Computer Physics Communications 87, 341–371 (1995)zbMATHCrossRefGoogle Scholar
  14. 14.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. I. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1992)Google Scholar
  15. 15.
    Michael Kass, A.W., Terzopoulo, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1998)CrossRefGoogle Scholar
  16. 16.
    McInerney, T., Terzopoulos, D.: Deformable models in medical images analysis:a survey. Medical Image Analysis 1, 91–108 (1996)CrossRefGoogle Scholar
  17. 17.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRefGoogle Scholar
  18. 18.
    Rotger, D., Rosales, M., Garcia, J., Pujol, O., Mauri, J., Radeva, P.: Activevessel: A new multimedia workstation for intravascular ultrasound and angiography fusion. Proc. IEEE of Computers in Cardiology 30, 65–68 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • David Rotger
    • 1
    • 2
  • Petia Radeva
    • 1
    • 2
  • Eduard Fernández-Nofrerías
    • 3
  • Josepa Mauri
    • 3
  1. 1.Computer Science Department, Autonomous University of BarcelonaSpain
  2. 2.Computer Vision Center, Autonomous University of BarcelonaSpain
  3. 3.University Hospital Germans Trias i PujolSpain

Personalised recommendations