Detection of Postmenopausal Alteration of Bone Structure in Digitized X-rays

  • Constantin Vertan
  • Ion Ştefan
  • Laura Florea
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)


The goal of this research is to investigate the effectiveness of trabecular bone characterization in X-ray images acquired by consumer digital cameras from the radiological films by the joint use of fractal and statistic parameters. We propose the classification of patients in the pre- and post-menopausal groups, based on the trabecular structure of the calcaneum bone. The bone structure is locally characterized in clinically-significant regions of interest by the usual fractal dimension and a parametric model of the gray-level histogram. The classification yields a 8.33% miss-detection and 16.66% false alarm rate.


Fractal Dimension Trabecular Bone Bone Structure High Resolution Compute Tomography Trabecular Bone Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouxsein, M.L.: Mechanisms of osteoporosis therapy: a bone strength perspective. Clinical Cornerstone, pp, 13–21 (2003)Google Scholar
  2. 2.
    Pothuaud, L., Lespessailles, E., et al.: Fractal analysis of trabecular bone texture on radiographs: Discriminant value in postmenopausal osteoporosis. Osteoporosis Int. 8, 618–625 (1998)CrossRefGoogle Scholar
  3. 3.
    Link, T.M., Majumdar, S.: Current diagnostic techniques in the evaluation of bone architecture. Current Osteoporosis Reports, pp. 47–52 (2004)Google Scholar
  4. 4.
    Apostol, L., Boudousq, V., et al.: Relevance of 2d radiographic texture analysis for the assessment of 3d bone micro-architecture. Medical Physics 33, 3546–3556 (2006)CrossRefGoogle Scholar
  5. 5.
    Benhamou, C.L., Poupon, S., et al.: Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J. Bone Mineral Res. 16, 697–704 (2001)CrossRefGoogle Scholar
  6. 6.
    Haralick, R.M.: Statistical and structural approaches to texture. Proc. of IEEE 67, 786–804 (1979)CrossRefGoogle Scholar
  7. 7.
    Pentland, A.: Fractal-based description of natural scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence 6, 661–674 (1984)CrossRefGoogle Scholar
  8. 8.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman Publ., San Francisco CA (1983)Google Scholar
  9. 9.
    Vertan, C., Ionescu, B., Ştefan, I., Ciuc, M.: Osteoporosis Detection in Calcaneum X-Ray Images by Digital Image Processing: Fractal and Statistical Approaches. In: Interdisciplinary Applications of Fractal and Chaos Theory, pp. 264–273. Romanian Academy Publ., Bucharest, Romania (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Constantin Vertan
    • 1
  • Ion Ştefan
    • 2
  • Laura Florea
    • 1
  1. 1.Image Processing and Analysis Laboratory, University “Politehnica” of BucharestRomania
  2. 2.Baia Mare County HospitalRomania

Personalised recommendations