Reconstruction of Heart Motion from 4D Echocardiographic Images

  • Michał Chlebiej
  • Krzysztof Nowiński
  • Piotr Ścisło
  • Piotr Bała
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)


The quantitative description of the cardiac motion is an important task for the assessment of the viability in the heart wall. Abnormalities in heart motion can eventually lead to life threatening cardiac injuries therefore measurements of dynamic heart functions are of great clinical importance. In this work we present a method for estimating heart motion from 4D (3D+time) echocardiographic images. Our approach involves non-linear 4D anisotropic diffusion filtering of the data, non-rigid registration of time sequence, noise removal by time averaging, shape and texture based segmentation and finally the reconstruction of the dynamic 3D model of the heart.


Instantaneous Velocity Anisotropic Diffusion Speckle Noise Heart Motion Left Ventricle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chlebiej, M., Mikołajczak, P., Nowiński, K., Bała, P.: Generation of dynamic heart model based on 4D echocardiographic image. In: Gavrilova, M., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganà, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3984, pp. 394–403. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Montgant, J., Delingette, H.: Space and time shape constrained deformable surfaces for 4D medical image segmentation. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 196–205. Springer, Heidelberg (2000)Google Scholar
  3. 3.
    Papademetris, X., Sinuas, A., Dione, D., Duncan, J.: Estimation on 3D left ventricular deformation from echocardiography. Medical Image Anal. 5(1), 17–28 (2001)CrossRefGoogle Scholar
  4. 4.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. On Pattern Anal. and Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  5. 5.
    Weickert, J.: Anisotropic diffusion in image processing, Teubner, G.G.(ed.) Stuttgart (1998)Google Scholar
  6. 6.
    Sederberg, T., Parry, S.: Free form deformation of solid geometric models. Computer Graphics 20(4), 151–160 (1986)CrossRefGoogle Scholar
  7. 7.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  8. 8.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 2790423, 623-656 (July/October 1948)Google Scholar
  9. 9.
    Huang, X., Metaxas, D., Chen, T.L: MetaMorphs: Deformable shape and texture models. IEEE Comp. Vision and Patt. Recog., Washington, DC (June 2004)Google Scholar
  10. 10.
    Monga, O., Deriche, R., Malandain, G., Cocquerez, J.P.: Recursive filtering and edge tracking: two primary tools for 3D edge detection. Image and Vision Computing 9(4), 203–214 (1991)CrossRefGoogle Scholar
  11. 11.
    Frangi, A.F., Niessen, W.J., Viergever, M.A.: Three-dimensional modeling for functional analysis of cardiac images: A review. IEEE Transactions on Medical Imaging 20(1), 2–25 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Michał Chlebiej
    • 1
  • Krzysztof Nowiński
    • 2
  • Piotr Ścisło
    • 3
  • Piotr Bała
    • 1
  1. 1.Faculty of Mathematics and Computer Science. N. Copernicus University, Chopina 12/18, 87-100 ToruńPoland
  2. 2.Interdisciplinary Centre for Mathematical and Computational Modeling, Warsaw University, Pawińskiego 5a, 02-106 WarsawPoland
  3. 3.Department of Cardiology, Medical Academy of Warsaw, 02-097 WarszawaPoland

Personalised recommendations