Biomarker Selection System, Employing an Iterative Peak Selection Method, for Identifying Biomarkers Related to Prostate Cancer

  • Panagiotis Bougioukos
  • Dionisis Cavouras
  • Antonis Daskalakis
  • Ioannis Kalatzis
  • Spiros Kostopoulos
  • Pantelis Georgiadis
  • George Nikiforidis
  • Anastasios Bezerianos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)


A biomarker selection system is proposed for identifying biomarkers related to prostate cancer. MS-spectra were obtained from the National Cancer Institute Clinical Proteomics Database. The system comprised two stages, a pre-processing stage, which is a sequence of MS-processing steps consisting of MS-spectrum smoothing, novel iterative peak selection, peak alignment, and a classification stage employing the PNN classifier. The proposed iterative peak selection method was based on first applying local thresholding, for determining the MS-spectrum noise level, and second applying an iterative global threshold estimation algorithm, for selecting peaks at different intensity ranges. At each global threshold, an optimum sub-set of these peaks was used to design the PNN classifier for highest performance, in discriminating normal cases from cases with prostate cancer, and thus indicate the best m/z values. Among these values, the information rich biomarkers 1160.8, 2082.2, 3595.9, 4275.3, 5817.3, 7653.2, that have been associated with the prostate gland, are proposed for further investigation.


Mass-Spectrometry Biomarker Selection Classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McDavid, K., Lee, J., Fulton, J.P., Tonita, J., Thompson, T.D.: Prostate cancer incidence and mortality rates and trends in the united states and canada. Public Health Rep. 119, 174–186 (2004)Google Scholar
  2. 2.
    Pannek, J., Partin, A.W.: The role of psa and percent free psa for staging and prognosis prediction in clinically localized prostate cancer. Semin. Urol. Oncol. 16, 100–105 (1998)Google Scholar
  3. 3.
    Chan, D.W., Sokoll, L.J.: Prostate-specific antigen: Update 1997. J. Int. Fed. Clin. Chem. 9, 120–125 (1997)Google Scholar
  4. 4.
    Wright, M.E., Han, D.K., Aebersold, R.: Mass spectrometry-based expression profiling of clinical prostate cancer. Mol. Cell Proteomics 4, 545–554 (2005)CrossRefGoogle Scholar
  5. 5.
    Malyarenko, D.I., Cooke, W.E., Adam, B.L., Malik, G., Chen, H., Tracy, T.M.W., Sasinowski, M., Semmes, O.J., Manos, D.M.: Enhancement of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight mass spectrometric records for serum peptides using time-series analysis techniques. Clin. Chem. 51, 65–74 (2005)CrossRefGoogle Scholar
  6. 6.
    Sauve, A.C., Speed, T.P.: Normalization, baseline correction and alignment of high-throughput mass spectrometry. In: Proceedings of the Data Procedings Gensips (2004) Google Scholar
  7. 7.
    Hilario, M., Kalousis, A., Pellegrini, C., Muller, M.: Processing and classification of protein mass spectra. Mass Spectrom Rev. 25, 409–449 (2006)CrossRefGoogle Scholar
  8. 8.
    Jong, K., Marchiori, E., Sebag, M., van der Vaart, A.: Feature selection in proteomic pattern data with support vector machines. In: Proceedings of the, 41 (2004)Google Scholar
  9. 9.
    Lilien, R.H., Farid, H., Donald, B.R.: Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. J. Comput. Biol. 10, 925–946 (2003)CrossRefGoogle Scholar
  10. 10.
    Petricoin, E.F., Ornstein, D.K., Paweletz, C.P., Ardekani, A., Hackett, P.S., Hitt, B.A., Velassco, A., Trucco, C., Wiegand, L., Wood, K., Simone, C.B., Levine, P.J., Linehan, W.M., Emmert-Buck, M.R., Steinberg, S.M., Kohn, E.C., Liotta, L.A.: Serum proteomic patterns for detection of prostate cancer. J. Natl. Cancer Inst. 94, 1576–1578 (2002)Google Scholar
  11. 11.
    Qu, Y., Adam, B.L., Thornquist, M., Potter, J.D., Thompson, M.L., Yasui, Y., Davis, J., Schellhammer, P.F., Cazares, L., Clements, M., Wright Jr., G.L., Feng, Z.: Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensionality data. Biometrics 59, 143–151 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Qu, Y., Adam, B.L., Yasui, Y., Ward, M.D., Cazares, L.H., Schellhammer, P.F., Feng, Z., Semmes, O.J., Wright Jr., G.L.: Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem. 48, 1835–1843 (2002)Google Scholar
  13. 13.
    Yasui, Y., Pepe, M., Thompson, M.L., Adam, B.L., Wright Jr., G.L., Qu, Y., Potter, J.D., Winget, M., Thornquist, M., Feng, Z.: A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection. Biostatistics 4, 449–463 (2003)zbMATHCrossRefGoogle Scholar
  14. 14.
    Adam, B.L., Qu, Y., Davis, J.W., Ward, M.D., Clements, M.A., Cazares, L.H., Semmes, O.J., Schellhammer, P.F., Yasui, Y., Feng, Z., Wright Jr., G.L.: Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 62, 3609–3614 (2002)Google Scholar
  15. 15.
  16. 16.
    Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J Amer. Statist. Assoc. 74, 829–836 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wang, X., Zhu, W., Pradhan, K., Ji, C., Ma, Y., Semmes, O.J., Glimm, J., Mitchell, J.: Feature extraction in the analysis of proteomic mass spectra. Proteomics 6, 2095–2100 (2006)CrossRefGoogle Scholar
  18. 18.
    Baggerly, K.A., Morris, J.S., Coombes, K.R.: Reproducibility of seldi-tof protein patterns in serum: Comparing datasets from different experiments. Bioinformatics 20, 777–785 (2004)CrossRefGoogle Scholar
  19. 19.
    Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)CrossRefGoogle Scholar
  20. 20.
    Theodorides, S., Koutroumbas, K.: Pattern recognition, 2nd edn. Academic Press, London (2003)Google Scholar
  21. 21.
    Ressom, H.W., Varghese, R.S., Abdel-Hamid, M., Eissa, S.A., Saha, D., Goldman, L., Petricoin, E.F., Conrads, T.P., Veenstra, T.D., Loffredo, C.A., Goldman, R.: Analysis of mass spectral serum profiles for biomarker selection. Bioinformatics 21, 4039–4045 (2005)CrossRefGoogle Scholar
  22. 22.
    ExPASy (accessed 05/12/2006), available: via the INTERNET
  23. 23.
    Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. U.S.A. 99, 6562–6566 (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Swanson, T.A., Kim, S.I., Myers, M., Pabon, A., Philibert, K.D., Wang, M., Glucksman, M.J.: The role of neuropeptide processing enzymes in endocrine (prostate) cancer: Ec (ep24.15). Protein Pept. Lett. 11, 471–478 (2004)CrossRefGoogle Scholar
  25. 25.
    Hering, F.L., Lipay, M.V., Lipay, M.A., Rodrigues, P.R., Nesralah, L.J., Srougi, M.: Comparison of positivity frequency of bcl-2 expression in prostate adenocarcinoma with low and high gleason score. Sao Paulo Med. J. 119, 138–141 (2001)CrossRefGoogle Scholar
  26. 26.
    Pan, C.X., Kinch, M.S., Kiener, P.A., Langermann, S., Serrero, G., Sun, L., Corvera, J., Sweeney, C.J., Li, L., Zhang, S., Baldridge, L.A., Jones, T.D., Koch, M.O., Ulbright, T.M., Eble, J.N., Cheng, L.: Pc cell-derived growth factor expression in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Clin. Cancer Res. 10, 1333–1337 (2004)CrossRefGoogle Scholar
  27. 27.
    Chan, J.M., Stampfer, M.J., Giovannucci, E., Gann, P.H., Ma, J., Wilkinson, P., Hennekens, C.H., Pollak, M.: Plasma insulin-like growth factor-i and prostate cancer risk: A prospective study. Science 279, 563–566 (1998)CrossRefGoogle Scholar
  28. 28.
    Yu, J.X., Chao, L., Chao, J.: Molecular cloning, tissue-specific expression, and cellular localization of human prostasin mrna. J. Biol. Chem. 270, 13483–13489 (1995)Google Scholar
  29. 29.
    Adam, B.L., Vlahou, A., Semmes, O.J., Wright Jr, G.L.: Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics 1, 1264–1270 (2001)CrossRefGoogle Scholar
  30. 30.
    Magni, P., Motta, M.: Expression of neuropeptide y receptors in human prostate cancer cells. Ann. Oncol. 12(2), 27–29 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Panagiotis Bougioukos
    • 1
  • Dionisis Cavouras
    • 2
  • Antonis Daskalakis
    • 1
  • Ioannis Kalatzis
    • 2
  • Spiros Kostopoulos
    • 1
  • Pantelis Georgiadis
    • 1
  • George Nikiforidis
    • 1
  • Anastasios Bezerianos
    • 1
  1. 1.Department of Medical Physics, School of Medicine, University of Patras, Rio, GR-26500Greece
  2. 2.Medical Signal and Image Processing Lab, Department of Medical Instrumentation Technology, Technological Education Institution of Athens, Ag. Spyridonos Street, Aigaleo, 122 10, AthensGreece

Personalised recommendations