Flexibility Description of the MET Protein Stalk Based on the Use of Non-uniform B-Splines

  • Magnus Gedda
  • Stina Svensson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)


The MET protein controls growth, invasion, and metastasis in cancer cells and is thereby of interest to study, for example from a structural point of view. For individual particle imaging by Cryo-Electron Tomography of the MET protein, or other proteins, dedicated image analysis methods are required to extract information in a robust way as the images have low contrast and resolution (with respect to the size of the imaged structure). We present a method to identify the two parts of the MET protein, β-propeller and stalk, using a fuzzy framework. Furthermore, we describe how a representation of the MET stalk, denoted stalk curve, can be identified based on the use of non-uniform B-splines. The stalk curve is used to extract relevant geometrical information about the stalk, e.g., to facilitate curvature and length measurements.


Control Point Curve Segment Fuzzy Object Discrete Curve Discrete Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birchmeier, C., Birchmeier, W., Gherardi, E., Vande Woude, G.F.: Met, metastasis, motility and more. Nature Reviews Molecular Cell Biology 4, 915–925 (2003)CrossRefGoogle Scholar
  2. 2.
    Gherardi, E., Sandin, S., Petoukhov, M.V., Finch, J., Youles, M.E., Öfverstedt, L.G., Miguel, R.N., Blundell, T.L., Vande Woude, G.F., Skoglund, U., Svergun, D.I.: Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc. National Academy of Sciences (PNAS) 103(11), 4046–4051 (2006)CrossRefGoogle Scholar
  3. 3.
    Skoglund, U., Öfverstedt, L.G., Burnett, R.M., Bricogne, G.: Maximum-entropy three-dimensional reconstruction with deconvolution of the contrast transfer function: A test application with adenovirus. J. Structural Biology 117, 173–188 (1996)CrossRefGoogle Scholar
  4. 4.
    Laing, M.: An introduction to the scope, potential and applications of X-ray analysis. International Union of Crystallographers Teaching Pamphlets (1981)Google Scholar
  5. 5.
    Atta-ur Rahman, H.E.J.: Nuclear Magnetic Resonance: Basic Principles. Springer, New York (1986)Google Scholar
  6. 6.
    Yu, Z., Bajaj, C.: Automatic ultrastructure segmentation of reconstructed cryoem maps of icosahedral viruses. IEEE Trans. Image Processing 14(9), 1324–1337 (2005)CrossRefGoogle Scholar
  7. 7.
    Volkmann, N.: A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J. of Structural Biology 138, 123–129 (2002)CrossRefGoogle Scholar
  8. 8.
    Svensson, S., Gedda, M., Fanelli, D., Skoglund, U., Öfverstedt, L.G., Sandin, S.: Using a fuzzy framework for delineation and decomposition of immunoglobulin G in cryo electron tomographic images. In: Tang, Y.Y., Wang, S.P., Lorette, G., Yeung, D.S., Yan, H. (eds.) ICPR 2006. Proc. The 18th International Conference on Pattern Recognition, vol. 4, pp. 687–690. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  9. 9.
    Bongini, L., Fanelli, D., Svensson, S., Gedda, M., Piazza, F., Skoglund, U.: Resolving the geometry of biomolecules as seen by cryo electron tomography. Journal of Microscopy (accepted for publication, 2007)Google Scholar
  10. 10.
    Watt, A.: 3D Computer Graphics, 3rd edn. Addison-Wesley, London, UK (2000)Google Scholar
  11. 11.
    Coeurjolly, D., Svensson, S.: Estimation of curvature along curves with application to fibres in 3D images of paper. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 247–254. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(6), 583–597 (1991)CrossRefGoogle Scholar
  14. 14.
    Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: theory, algorithms, and applications. Comput. Vis. Image Underst. 86(3), 171–190 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, New York, USA (2001)zbMATHGoogle Scholar
  16. 16.
    Levi, G., Montanari, U.: A grey-weighted skeleton. Information and Control 17, 62–91 (1970)zbMATHCrossRefGoogle Scholar
  17. 17.
    Fouard, C., Gedda, M.: An objective comparison between gray weighted distance transforms and weighted distance transforms on curved spaces. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 259–270. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Wall, K., Danielsson, P.E.: A fast sequential method for polygonial approximation of digitized curves. Computer Vision, Graphics, and Image Processing 28, 220–227 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Magnus Gedda
    • 1
  • Stina Svensson
    • 1
  1. 1.Uppsala University/Swedish University of Agricultural Sciences, Centre for Image Analysis, Lägerhyddsvägen 2, SE-752 37, UppsalaSweden

Personalised recommendations