Rectified Reconstruction from Stereo Pairs and Robot Mapping

  • Antonio Javier Gallego
  • Rafael Molina
  • Patricia Compan̈
  • Carlos Villagrá
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)


The reconstruction and mapping of real scenes is a crucial element in several fields such as robot navigation. Stereo vision can be a powerful solution. However the perspective effect arises, as well as other problems, when the reconstruction is tackled using depth maps obtained from stereo images. A new approach is proposed to avoid the perspective effect, based on a geometrical rectification using the vanishing point of the image. It also uses sub-pixel precision to solve the lack of information for distant objects. Finally, the method is applied to map a whole scene, introducing a cubic filter.


Stereo Image Stereo Vision Robot Navigation Stereo Pair Stereo Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pérez, J., Castellanos, J., Montiel, J., Neira, J., Tardós, J.: Continuous mobile robot localization: Vision vs. laser. ICRA (1999)Google Scholar
  2. 2.
    Moravec, H.P.: Robot spatial perception by stereoscopic vision and 3D evidence grids. The Robotics Institute Carnegie Mellon University. Pittsburgh, PA (1996)Google Scholar
  3. 3.
    Stephen Se, D., Lowe, J.: Little: Vision-based mobile robot localization and mapping using scale-invariant features. ICRA (2001)Google Scholar
  4. 4.
    Martin, C., Thrun, S.: Real-time acquisition of compact volumetric maps with mobile robots. ICRA (2002)Google Scholar
  5. 5.
    Martinsanz, G.P., de la Cruz García, J.M.: Visión por computador: imágenes digitales y aplicaciones. Ra-Ma, D.L. (ed.) Madrid (2001)Google Scholar
  6. 6.
    Vogiatzis, G., Torr, P.H.S., Cipolla, R.: Multi-view stereo via Volumetric Graph-cuts. CVPR, pp. 391–398 (2005)Google Scholar
  7. 7.
    Sinha, S., Pollefeys, M.: Multi-view Reconstruction using Photo-consistency and Exact Silhouette Constraints: A Maximum-Flow Formulation. ICCV (2005)Google Scholar
  8. 8.
    Broggi, A.: Robust Real-Time Lane and Road Detection in Critical Shadow Conditions. Proceedings IEEE International Symposium on Computer Vision, Coral Gables, Florida. IEEE Computer Society, Los Alamitos, CA, USA (1995)Google Scholar
  9. 9.
    Compañ, P., Satorre, R., Rizo, R.: Disparity estimation in stereoscopic vision by simulated annealing. In: Artificial Intelligence research and development, pp. 160–167. IOS Press, Amsterdam, Trento, Italy (2003)Google Scholar
  10. 10.
    Trucco, E., Verri, A.: Introductory techniques for 3-D Computer Vision. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  11. 11.
    Cox, I., Ignoran, S., Rao, S.: A maximum likelihood stereo algorithm. Computer Vision and Image Understanding, 63 (1996)Google Scholar
  12. 12.
    Faugeras, O.: Three-dimensional computer vision: a geometric viewpoint. The MIT Press, Cambridge, Massachusetts (1993)Google Scholar
  13. 13.
    Gallego Sánchez, A.J., Molina Carmona, R., Villagrá Arnedo, C.: Three-Dimensional Mapping from Stereo Images with Geometrical Rectification. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2006. LNCS, vol. 4069, pp. 213–222. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Coughlan, J., Yuille, A.L.: Manhattan World: Orientation and Outlier Detection by Bayesian Inference. Neural Computation 15(5), 1063–1088 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Antonio Javier Gallego
    • 1
  • Rafael Molina
    • 1
  • Patricia Compan̈
    • 1
  • Carlos Villagrá
    • 1
  1. 1.Grupo de Informática Industrial e Inteligencia Artificial, Universidad de Alicante, Ap.99, E-03080, AlicanteSpain

Personalised recommendations