Skip to main content

Speeding-Up Differential Motion Detection Algorithms Using a Change-Driven Data Flow Processing Strategy

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

Abstract

A constraint of real-time implementation of differential motion detection algorithms is the large amount of data to be processed. Full image processing is usually the classical approach for these algorithms: spatial and temporal derivatives are calculated for all pixels in the image despite the fact that the majority of image pixels may not have changed from one frame to the next. By contrast, the data flow model works in a totally different way as instructions are only fired when the data needed for these instructions are available. Here we present a method to speed-up low level motion detection algorithms. This method is based on pixel change instead of full image processing and good speed-up is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sandini, G., Questa, P., Scheffer, D., Diericks, B., Mannucci, A.: A retina-like CMOS sensor and its applications. Sensor Array and Multichannel Signal Processing Workshop, pp. 514-519 (2000)

    Google Scholar 

  2. Boluda, J.A., Domingo, J.: On the advantages of combining differential algorithms and log-polar vision for detection of self-motion from a mobile robot. Robotics and Autonomous Systems 37(4), 283–296 (2001)

    Article  MATH  Google Scholar 

  3. Özalevli, E., Higgins, C.M.: Reconfigurable Biologically Inspired Visual Motion Systems Using Modular Neuromorphic VLSI Chips. IEEE Transactions on Circuits and Systems 52(1), 79–92 (2005)

    Article  Google Scholar 

  4. Silc, J., Robic, B., Ungerer, T.: Processor architecture: from dataflow to superscalar and beyond. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  5. Pardo, F., Boluda, J.A., Sosa, J.C.: Circle detection and tracking speed-up based on change-driven image processing. In: GVIP-05. Proc. ICGST International Conference on Graphics, Vision and Image Processing (2005)

    Google Scholar 

  6. Manzanera, A., Richefeu, J.C.: A new motion detection algorithm based on Σ-Δ background estimation. Pattern Recognition Letters 28, 320–328 (2007)

    Article  Google Scholar 

  7. McFarlane, N., Schofield, C.: Segmentation and tracking of piglets in images. Machine Vision and Applications 8, 187–193 (1995)

    Article  Google Scholar 

  8. Manzanera, A., Richefeu, J.C.: A robust and computationally efficient motion detection algorithm based on Σ − Δ background estimation. In: Proc. ICGVIP 2004, pp. 46–51 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boluda, J.A., Pardo, F. (2007). Speeding-Up Differential Motion Detection Algorithms Using a Change-Driven Data Flow Processing Strategy. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics