This paper reviews main approaches to 3D shape perception in both human and computer vision. The approaches are evaluated with respect to their plausibility of generating adequate explanations of human vision. The criterion for plausibility is provided by existing psychophysical results. A new theory of 3D shape perception is then outlined. According to this theory, human perception of shapes critically depends on a priori shape constraints: symmetry and compactness. The role of depth cues is secondary, at best.


Retinal Image Human Visual System Perceptual Representation Binocular Disparity Shape Constancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazen: The optics.Books. p. 1-3 (Translated by Sabra, A.I., The Warburg Institute, London) (1083/1989)Google Scholar
  2. 2.
    Marr, D.: Vision. W.H. Freeman, New York (1982)Google Scholar
  3. 3.
    Shepard, R.N., Cooper, L.A.: Mental images and their transformations. MIT Press, Cambridge, MA (1982)Google Scholar
  4. 4.
    Biederman, I., Gerhardstein, P.C.: Recognizing depth-rotated objects: Evidence and conditions from three-dimensional viewpoint invariance. Journal of Experimental Psychology: HP&P 19, 1162–1182 (1993)CrossRefGoogle Scholar
  5. 5.
    Rock, I., DiVita, J.: A case of viewer-centered object perception. Cognitive Psychology 19, 280–293 (1987)CrossRefGoogle Scholar
  6. 6.
    Tarr, M.J., Williams, P., Hayward, W.G., Gauthier, I.: Three-dimensional object recognition is viewpoint dependent. Nature Neuroscience 1, 275–277 (1998)CrossRefGoogle Scholar
  7. 7.
    Poggio, T., Edelman, S.: A network that learns to recognize three-dimensional objects. Nature 343, 263–266 (1990)CrossRefGoogle Scholar
  8. 8.
    von Helmholtz, H.: Treatise on Physiological Optics (translated from German, J.P.C.Southall) Thoemmes, Bristol (1910/2000)Google Scholar
  9. 9.
    Koffka, K.: Principles of Gestalt Psychology. Harcourt, Brace, New York (1935)Google Scholar
  10. 10.
    Hochberg, J.: Perception. Prentice-Hall, Englewood Cliffs, NJ (1978)Google Scholar
  11. 11.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)Google Scholar
  12. 12.
    Locke, J.: An essay concerning human understanding. Clarendon, Oxford (1690/1975)Google Scholar
  13. 13.
    Hering, E.: Beiträge zur Physiologie. Heft 1. Englemann, Leipzig (1861)Google Scholar
  14. 14.
    Thorndike, E.: The instinctive reactions of young chicks. Psychological Review 6, 191–282 (1899)CrossRefGoogle Scholar
  15. 15.
    Hess, E.H.: Space perception in the chick. Scientific American 195, 71–80 (1956)Google Scholar
  16. 16.
    Gibson, E., Walk, R.: The visual cliff. Scientific American 202, 64–71 (1960)Google Scholar
  17. 17.
    von Senden, M.: Space and sight. Methuen, London (1932/1960)Google Scholar
  18. 18.
    Hubel, D.H., Wiesel, T.N.: Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. Journal of Neurophysiology 26, 994–1002 (1963)Google Scholar
  19. 19.
    Rock, I., Harris, C.S.: Vision and touch. Scientific American 216, 96–104 (1967)CrossRefGoogle Scholar
  20. 20.
    Linden, D.E.J., Kallenbach, U., Heinecke, A., Singer, W., Goebel, R.: The myth of upright vision. A psychophysical and functional imaging study of adaptation to inverting spectacles. Perception 28, 469–481 (1999)CrossRefGoogle Scholar
  21. 21.
    Slater, A., Morison, V.: Shape constancy and slant perception at birth. Perception 14, 337–344 (1985)CrossRefGoogle Scholar
  22. 22.
    Kilpatrick, F.P.: Explorations in transactional psychology. New York Univ. Press, NY (1961)Google Scholar
  23. 23.
    Bruner, J.S., Goodman, C.C.: Value and need as organizing factors in perception. Journal of abnormal and social psychology 42, 33–44 (1947)CrossRefGoogle Scholar
  24. 24.
    Bruner, J.S.: Beyond the information given, studies in the psychology of knowing. Norton, NY (1973)Google Scholar
  25. 25.
    Gibson, J.J.: The perception of the visual world. Houghton Mifflin, Boston (1950)Google Scholar
  26. 26.
    Weiss, I.: Projective invariants of shapes. In: Proceedings of DARPA Image Understanding Workshop, Cambridge, MA, pp. 1125–1134 (1988)Google Scholar
  27. 27.
    Rothwell, C.A.: Object recognition through invariant indexing. Oxford University Press, Oxford (1995)Google Scholar
  28. 28.
    Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981)CrossRefGoogle Scholar
  29. 29.
    Pizlo, Z.: 3D shape: its unique place in visual perception. MIT Press, Cambridge, MA (2008)Google Scholar
  30. 30.
    Pizlo, Z., Rosenfeld, A.: Recognition of planar shapes from perspective images using contour-based invariants. Computer Vision, Graphics & Image Processing: Image Understanding 56, 330–350 (1992)zbMATHGoogle Scholar
  31. 31.
    Pizlo, Z., Loubier, K.: Recognition of a solid shape from its single perspective image obtained by a calibrated camera. Pattern Recognition 33, 1675–1681 (2000)CrossRefGoogle Scholar
  32. 32.
    Pizlo, Z.: A theory of shape constancy based on perspective invariants. Vision Research 34, 1637–1658 (1994)CrossRefGoogle Scholar
  33. 33.
    Julesz, B.: Foundations of cyclopean perception. University of Chicago Press, Chicago (1971)Google Scholar
  34. 34.
    Li, Y., Pizlo, Z.: Is viewer-centered representation necessary for 3D shape perception. Journal of Vision 6 (2006) (Abstract 268)Google Scholar
  35. 35.
    Biederman, I.: Human image understanding: recent research and a theory. Computer Vision, Graphics and Image Processing 32, 29–73 (1985)CrossRefGoogle Scholar
  36. 36.
    Pentland, A.P.: Perceptual organization and the representation of natural form. Artificial Intelligence 28, 293–331 (1986)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Dickinson, S., Pentland, A., Rosenfeld, A.: From volumes to views: An approach to 3-D object recognition. CVGIP: Image Understanding 55, 130–154 (1992)zbMATHCrossRefGoogle Scholar
  38. 38.
    Aloimonos, Y.: Purposive active vision, CVGIP: Image Understanding, pp. 840–850 (1992)Google Scholar
  39. 39.
    Tolman, E.C.: Purposive behavior in animals and men. Century, NY (1932)Google Scholar
  40. 40.
    Rosenblueth, A., Wiener, N., Bigelow, J.: Behavior, purpose and teleology. Philosophy of Science 10, 18–24 (1943)CrossRefGoogle Scholar
  41. 41.
    Gregory, R.L.: Perceptions as hypotheses. Philosophical Transactions of the Royal Society, London B290, 181–197 (1980)CrossRefGoogle Scholar
  42. 42.
    Wertheimer, M.: Principles of perceptual organization. In: Beardslee, D.C., Wertheimer, M., van Nostrand, D. (eds.) Readings in Perception, pp. 115–135, NY (1923/1958)Google Scholar
  43. 43.
    Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 623–656, 379–423 (1948) Google Scholar
  44. 44.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of ill-posed problems. John Wiley & Sons, New York (1977)zbMATHGoogle Scholar
  45. 45.
    Poggio, T., Torre, V., Koch, C.: Computational vision and regularization theory. Nature 317, 314–319 (1985)CrossRefGoogle Scholar
  46. 46.
    Pizlo, Z.: Perception viewed as an inverse problem. Vision Research 41, 3145–3161 (2001)CrossRefGoogle Scholar
  47. 47.
    Pizlo, Z., Stevenson, A.K.: Shape constancy from novel views. Perception & Psychophysics 61, 1299–1307 (1999)Google Scholar
  48. 48.
    Chan, M.W., Stevenson, A.K., Li, Y., Pizlo, Z.: Binocular shape constancy from novel views: the role of a priori constraints. Perception & Psychophysics 68, 1124–1139 (2006)Google Scholar
  49. 49.
    Li, Y., Pizlo, Z.: Monocular and binocular perception of 3D shape: the role of a priori constraints. Journal of Vision 5 (2005) (Abstract 521)Google Scholar
  50. 50.
    Pizlo, Z., Li, Y., Francis, G.: A new look at binocular stereopsis. Vision Research 45, 2244–2255 (2005)CrossRefGoogle Scholar
  51. 51.
    Vetter, T., Poggio, T.: Symmetric 3D objects are an easy case for 2D object recognition. In: Tyler, C.W. (ed.) Human symmetry perception and its computational analysis, pp. 349–359. Lawrence Erlbaum, Mahwah, NJ (2002)Google Scholar
  52. 52.
    Chan, M.W., Pizlo, Z., Chelberg, D.M.: Binocular shape reconstruction: psychological plausibility of the 8 point algorithm. Computer Vision & Image Understanding 74, 121–137 (1999)CrossRefGoogle Scholar
  53. 53.
    Binford, T.O.: Visual perception by computer. In: IEEE Conference on Systems and Control, Miami (1971)Google Scholar
  54. 54.
    Li, Y., Pizlo, Z.: Reconstruction of 3D symmetrical shapes by using planarity and compactness constraints. Annual meeting of the Vision Sciences Society, Sarasota, FL (Abstract 934) (2007)Google Scholar
  55. 55.
    Pizlo, Z., Li, Y., Steinman, R.M.: A new paradigm for 3D shape perception. Perception 35 (2006) (ECVP abs)Google Scholar
  56. 56.
    Brady, M., Yuille, A.: Inferring 3D orientation from 2D contour (an extremum principle). In: Richards, W. (ed.) Natural computation, pp. 99–106. MIT Press, Cambridge, MA (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Zygmunt Pizlo
    • 1
  1. 1.Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907-2081U.S.A.

Personalised recommendations