Skip to main content

Human Perception of 3D Shapes

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

Abstract

This paper reviews main approaches to 3D shape perception in both human and computer vision. The approaches are evaluated with respect to their plausibility of generating adequate explanations of human vision. The criterion for plausibility is provided by existing psychophysical results. A new theory of 3D shape perception is then outlined. According to this theory, human perception of shapes critically depends on a priori shape constraints: symmetry and compactness. The role of depth cues is secondary, at best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alhazen: The optics.Books. p. 1-3 (Translated by Sabra, A.I., The Warburg Institute, London) (1083/1989)

    Google Scholar 

  2. Marr, D.: Vision. W.H. Freeman, New York (1982)

    Google Scholar 

  3. Shepard, R.N., Cooper, L.A.: Mental images and their transformations. MIT Press, Cambridge, MA (1982)

    Google Scholar 

  4. Biederman, I., Gerhardstein, P.C.: Recognizing depth-rotated objects: Evidence and conditions from three-dimensional viewpoint invariance. Journal of Experimental Psychology: HP&P 19, 1162–1182 (1993)

    Article  Google Scholar 

  5. Rock, I., DiVita, J.: A case of viewer-centered object perception. Cognitive Psychology 19, 280–293 (1987)

    Article  Google Scholar 

  6. Tarr, M.J., Williams, P., Hayward, W.G., Gauthier, I.: Three-dimensional object recognition is viewpoint dependent. Nature Neuroscience 1, 275–277 (1998)

    Article  Google Scholar 

  7. Poggio, T., Edelman, S.: A network that learns to recognize three-dimensional objects. Nature 343, 263–266 (1990)

    Article  Google Scholar 

  8. von Helmholtz, H.: Treatise on Physiological Optics (translated from German, J.P.C.Southall) Thoemmes, Bristol (1910/2000)

    Google Scholar 

  9. Koffka, K.: Principles of Gestalt Psychology. Harcourt, Brace, New York (1935)

    Google Scholar 

  10. Hochberg, J.: Perception. Prentice-Hall, Englewood Cliffs, NJ (1978)

    Google Scholar 

  11. Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)

    Google Scholar 

  12. Locke, J.: An essay concerning human understanding. Clarendon, Oxford (1690/1975)

    Google Scholar 

  13. Hering, E.: Beiträge zur Physiologie. Heft 1. Englemann, Leipzig (1861)

    Google Scholar 

  14. Thorndike, E.: The instinctive reactions of young chicks. Psychological Review 6, 191–282 (1899)

    Article  Google Scholar 

  15. Hess, E.H.: Space perception in the chick. Scientific American 195, 71–80 (1956)

    Google Scholar 

  16. Gibson, E., Walk, R.: The visual cliff. Scientific American 202, 64–71 (1960)

    Google Scholar 

  17. von Senden, M.: Space and sight. Methuen, London (1932/1960)

    Google Scholar 

  18. Hubel, D.H., Wiesel, T.N.: Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. Journal of Neurophysiology 26, 994–1002 (1963)

    Google Scholar 

  19. Rock, I., Harris, C.S.: Vision and touch. Scientific American 216, 96–104 (1967)

    Article  Google Scholar 

  20. Linden, D.E.J., Kallenbach, U., Heinecke, A., Singer, W., Goebel, R.: The myth of upright vision. A psychophysical and functional imaging study of adaptation to inverting spectacles. Perception 28, 469–481 (1999)

    Article  Google Scholar 

  21. Slater, A., Morison, V.: Shape constancy and slant perception at birth. Perception 14, 337–344 (1985)

    Article  Google Scholar 

  22. Kilpatrick, F.P.: Explorations in transactional psychology. New York Univ. Press, NY (1961)

    Google Scholar 

  23. Bruner, J.S., Goodman, C.C.: Value and need as organizing factors in perception. Journal of abnormal and social psychology 42, 33–44 (1947)

    Article  Google Scholar 

  24. Bruner, J.S.: Beyond the information given, studies in the psychology of knowing. Norton, NY (1973)

    Google Scholar 

  25. Gibson, J.J.: The perception of the visual world. Houghton Mifflin, Boston (1950)

    Google Scholar 

  26. Weiss, I.: Projective invariants of shapes. In: Proceedings of DARPA Image Understanding Workshop, Cambridge, MA, pp. 1125–1134 (1988)

    Google Scholar 

  27. Rothwell, C.A.: Object recognition through invariant indexing. Oxford University Press, Oxford (1995)

    Google Scholar 

  28. Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981)

    Article  Google Scholar 

  29. Pizlo, Z.: 3D shape: its unique place in visual perception. MIT Press, Cambridge, MA (2008)

    Google Scholar 

  30. Pizlo, Z., Rosenfeld, A.: Recognition of planar shapes from perspective images using contour-based invariants. Computer Vision, Graphics & Image Processing: Image Understanding 56, 330–350 (1992)

    MATH  Google Scholar 

  31. Pizlo, Z., Loubier, K.: Recognition of a solid shape from its single perspective image obtained by a calibrated camera. Pattern Recognition 33, 1675–1681 (2000)

    Article  Google Scholar 

  32. Pizlo, Z.: A theory of shape constancy based on perspective invariants. Vision Research 34, 1637–1658 (1994)

    Article  Google Scholar 

  33. Julesz, B.: Foundations of cyclopean perception. University of Chicago Press, Chicago (1971)

    Google Scholar 

  34. Li, Y., Pizlo, Z.: Is viewer-centered representation necessary for 3D shape perception. Journal of Vision 6 (2006) (Abstract 268)

    Google Scholar 

  35. Biederman, I.: Human image understanding: recent research and a theory. Computer Vision, Graphics and Image Processing 32, 29–73 (1985)

    Article  Google Scholar 

  36. Pentland, A.P.: Perceptual organization and the representation of natural form. Artificial Intelligence 28, 293–331 (1986)

    Article  MathSciNet  Google Scholar 

  37. Dickinson, S., Pentland, A., Rosenfeld, A.: From volumes to views: An approach to 3-D object recognition. CVGIP: Image Understanding 55, 130–154 (1992)

    Article  MATH  Google Scholar 

  38. Aloimonos, Y.: Purposive active vision, CVGIP: Image Understanding, pp. 840–850 (1992)

    Google Scholar 

  39. Tolman, E.C.: Purposive behavior in animals and men. Century, NY (1932)

    Google Scholar 

  40. Rosenblueth, A., Wiener, N., Bigelow, J.: Behavior, purpose and teleology. Philosophy of Science 10, 18–24 (1943)

    Article  Google Scholar 

  41. Gregory, R.L.: Perceptions as hypotheses. Philosophical Transactions of the Royal Society, London B290, 181–197 (1980)

    Article  Google Scholar 

  42. Wertheimer, M.: Principles of perceptual organization. In: Beardslee, D.C., Wertheimer, M., van Nostrand, D. (eds.) Readings in Perception, pp. 115–135, NY (1923/1958)

    Google Scholar 

  43. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 623–656, 379–423 (1948)

    Google Scholar 

  44. Tikhonov, A.N., Arsenin, V.Y.: Solutions of ill-posed problems. John Wiley & Sons, New York (1977)

    MATH  Google Scholar 

  45. Poggio, T., Torre, V., Koch, C.: Computational vision and regularization theory. Nature 317, 314–319 (1985)

    Article  Google Scholar 

  46. Pizlo, Z.: Perception viewed as an inverse problem. Vision Research 41, 3145–3161 (2001)

    Article  Google Scholar 

  47. Pizlo, Z., Stevenson, A.K.: Shape constancy from novel views. Perception & Psychophysics 61, 1299–1307 (1999)

    Google Scholar 

  48. Chan, M.W., Stevenson, A.K., Li, Y., Pizlo, Z.: Binocular shape constancy from novel views: the role of a priori constraints. Perception & Psychophysics 68, 1124–1139 (2006)

    Google Scholar 

  49. Li, Y., Pizlo, Z.: Monocular and binocular perception of 3D shape: the role of a priori constraints. Journal of Vision 5 (2005) (Abstract 521)

    Google Scholar 

  50. Pizlo, Z., Li, Y., Francis, G.: A new look at binocular stereopsis. Vision Research 45, 2244–2255 (2005)

    Article  Google Scholar 

  51. Vetter, T., Poggio, T.: Symmetric 3D objects are an easy case for 2D object recognition. In: Tyler, C.W. (ed.) Human symmetry perception and its computational analysis, pp. 349–359. Lawrence Erlbaum, Mahwah, NJ (2002)

    Google Scholar 

  52. Chan, M.W., Pizlo, Z., Chelberg, D.M.: Binocular shape reconstruction: psychological plausibility of the 8 point algorithm. Computer Vision & Image Understanding 74, 121–137 (1999)

    Article  Google Scholar 

  53. Binford, T.O.: Visual perception by computer. In: IEEE Conference on Systems and Control, Miami (1971)

    Google Scholar 

  54. Li, Y., Pizlo, Z.: Reconstruction of 3D symmetrical shapes by using planarity and compactness constraints. Annual meeting of the Vision Sciences Society, Sarasota, FL (Abstract 934) (2007)

    Google Scholar 

  55. Pizlo, Z., Li, Y., Steinman, R.M.: A new paradigm for 3D shape perception. Perception 35 (2006) (ECVP abs)

    Google Scholar 

  56. Brady, M., Yuille, A.: Inferring 3D orientation from 2D contour (an extremum principle). In: Richards, W. (ed.) Natural computation, pp. 99–106. MIT Press, Cambridge, MA (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pizlo, Z. (2007). Human Perception of 3D Shapes. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics