Skip to main content

Finding Missing tRNA Modification Genes: A Comparative Genomics Goldmine

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 15))

As the adapters between mRNAs and the elongating peptide chain, transfer RNAs (tRNA) are at the nexus of the genetic code and of the translation apparatus. Prior to their participation in translation, tRNAs must undergo extensive processing of the nascent transcript. The post-transcriptional processing of tRNAs involves a number of functionally distinct events essential for tRNA maturation (Altman et al. 1995; Björk 1995; Deutscher 1995; Westaway and Abelson 1995). The phenomenon of nucleoside modification is perhaps the most remarkable of these events, and results in a wealth of structural changes to the canonical nucleosides (Björk 1995). Although other RNA species also exhibit varying degrees of nucleoside modification, it is only in the tRNA that a rich structural diversity is realized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman S, Kirsebom L, Talbot S (1995) Recent studies of RNaseP. In: RajBhandary UL (ed) tRNA: structure, biosynthesis, and function. ASM Press, Washington,DC, pp 67-78

    Google Scholar 

  • Anantharaman V, Koonin EV, Aravind L (2002a) Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427-1464

    PubMed  Google Scholar 

  • Anantharaman V, Koonin EV, Aravind L (2002b) SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases. J Mol Microbiol Biotechnol 4:71-75

    PubMed  Google Scholar 

  • Andachi Y, Yamao F, Muto A, Osawa S (1989) Codon recognition patterns as deduced from sequences of the complete set of transfer RNA species in Mycoplasma capricolum. Resemblance to mitochondria. J Mol Biol 209:37-54

    PubMed  Google Scholar 

  • Bai Y, Fox DT, Lacy JA, Van Lanen SG, Iwata-Reuyl D (2000) Hypermodification of tRNA in Thermophilic archaea.Cloning,overexpression,and characterization of tRNA-guanine transglycosylase from Methanococcus jannaschii. J Biol Chem 275:28731-28738

    PubMed  Google Scholar 

  • Bishop AC, Xu J, Johnson RC, Schimmel P, de Crécy-Lagard V (2002) Identification of the tRNA-dihydrouridine synthase family. J Biol Chem 277:25090-25095

    PubMed  Google Scholar 

  • Björk G R (1980) A novel link between the biosynthesis of aromatic amino acids and transfer RNA modification in Escherichia coli. J Mol Biol 140:391-410

    PubMed  Google Scholar 

  • Björk GR (1992) The role of modified nucleosides in tRNA interactions. In: Pirtle RM (ed) Transfer RNA in protein ynthesis. CRC Press, Boca Raton, pp 23-85

    Google Scholar 

  • Björk GR (1995) Biosynthesis and function of modified nucleosides. In: RajBhandary UL (ed) tRNA: structure, biosynthesis, and function. ASM Press, Washington, DC, pp 165-206

    Google Scholar 

  • Björk GR (1996) Stable RNA modification. In: Neidhart FC (ed) Escherichia coli and Salmonella. cellular and molecular biology. ASM Press, Washington, DC, pp 861-886

    Google Scholar 

  • Björk GR, Jacobsson K, Nilsson K, Johansson MJ, Bystrom AS, Persson OP (2001) A primordial tRNA modification required for the evolution of life? Embo J 20:231-239

    PubMed  Google Scholar 

  • Björk GR, Kjellin-Straby K (1978) Escherichia coli mutants with defects in the biosynthesis of 5-methylaminomethyl-2-thio-uridine or 1-methylguanosine in their tRNA. J Bacteriol 133:508-517

    PubMed  Google Scholar 

  • Björk GR, Kohli J (1990) Synthesis and function of modified nucleosides in tRNA. In: Kuo K (ed) Chromatography and modification of nucleosides. Part b biological roles and function of modification. Elsevier, Amsterdam, pp B13-B67

    Google Scholar 

  • Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453-1474

    PubMed  Google Scholar 

  • Blobstein SH, Grunberger D, Weinstein IB, Nakanishi K (1973) Isolation and structure determination of the fluorescent base from bovine liver phenylalanine transfer ribonucleic acid. Biochemistry 12:188-193

    PubMed  Google Scholar 

  • Bregeon D, Colot V, Radman M, Taddei F (2001) Translational misreading: a tRNA modification counteracts a +2 ribosomal frameshift. Genes Dev 15:2295-2306

    PubMed  Google Scholar 

  • Bystrom AS, Björk GR (1982) Chromosomal location and cloning of the gene (trmD) responsible for the synthesis of tRNA (m1G) methyltransferase in Escherichia coli K-12. Mol Gen Genet 188:440-446

    PubMed  Google Scholar 

  • Cabedo H, Macian F, Villarroya M, Escudero JC, Martinez-Vicente M, Knecht E, Armengod ME (1999) The Escherichia coli trmE (mnmE) gene, involved in tRNA modification, codes for an evolutionarily conserved GTPase with unusual biochemical properties. EMBO J 18:7063-7076

    PubMed  Google Scholar 

  • Caillet J, Droogmans L (1988) Molecular cloning of the Escherichia coli miaA gene involved in the formation of delta 2-isopentenyl adenosine in tRNA. J Bacteriol 170:4147-4152

    PubMed  Google Scholar 

  • Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65-73

    PubMed  Google Scholar 

  • Cordwell SJ (1999) Microbial genomes and “missing” enzymes: redefining biochemical pathways. Arch Microbiol 172:269-279

    PubMed  Google Scholar 

  • Dalluge JJ, Hamamoto T, Horikoshi K, Morita RY, Stetter KO, McCloskey JA (1997) Post-transcriptional modification of tRNA in psychrophilic bacteria. J Bacteriol 179:1918-1923

    PubMed  Google Scholar 

  • Dalluge JJ, Hashizume T, McCloskey JA (1996) Quantitative measurement of dihydrouridine in RNA using isotope dilution liquid chromatography-mass spectrometry (LC/MS). Nucleic Acids Res 24:3242-3245

    PubMed  Google Scholar 

  • Daugherty M, Polanuyer B, Farrell M, Scholle M, Lykidis A, de Crécy-Lagard V, Osterman A (2002) Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J Biol Chem 277:21431-21439

    Google Scholar 

  • De Bie LG, Roovers M, Oudjama Y, Wattiez R, Tricot C, Stalon V, Droogmans L, Bujnicki JM (2003) The yggH gene of Escherichia coli encodes a tRNA (m7G46) methyltransferase. J Bacteriol 185:3238-3243

    PubMed  Google Scholar 

  • Del Campo M, Kaya Y, Ofengand J (2001) Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli. Rna 7:1603-1615

    PubMed  Google Scholar 

  • Derrick WB, Horowitz J (1993) Probing structural differences between native and in vitro transcribed Escherichia coli valine transfer RNA: evidence for stable base modification-dependent conformers. Nucleic Acids Res 21:4948-4953

    PubMed  Google Scholar 

  • Deutscher MP (1995) tRNA processing nucleases. In: RajBhandary UL (ed) tRNA: structure, biosynthesis, and function. ASM Press, Washington, DC, pp 51-66

    Google Scholar 

  • Droogmans L, Grosjean H (1987) Enzymatic conversion of guanosine 3 ¢ adjacent to the anticodon of yeast tRNAPhe to N1-methylguanosine and the wye nucleoside: dependence on the anticodon sequence. EMBO J 6:477-483

    PubMed  Google Scholar 

  • Eastwood Leung H-C, G H T, Björk G R, Winkler M E (1998). Genetic locations and database accession numbers of RNA-modifying and -editing enzymes. In: Benne R (ed) modification and editing of RNA. ASM Press, Washington, DC, pp 561-568

    Google Scholar 

  • Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402:86-90

    PubMed  Google Scholar 

  • Esberg B, Leung HC, Tsui HC, Björk GR, Winkler M E (1999) Identification of the miaB gene, involved in methylthiolation of isopentenylated A37 derivatives in the tRNA of Salmonella typhimurium and Escherichia coli. J Bacteriol 181:7256-7265

    PubMed  Google Scholar 

  • Frey B, McCloskey JA, Kersten W, Kersten H (1988) New function of vitamin B12: cobamide-dependent reduction of Epoxyqueuosine to Queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. J Bacteriol 170:2078-2082

    PubMed  Google Scholar 

  • Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO (2001) Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell 12:2987-3003

    PubMed  Google Scholar 

  • Gelfand MS, Novichkov PS, Novichkova ES, Mironov AA (2000) Comparative analysis of regulatory patterns in bacterial genomes. Brief Bioinform 1:357-371

    PubMed  Google Scholar 

  • Gerdes SY, Scholle MD, D'Souza M, Bernal A, Baev MV, Farrell M, Kurnasov OV, Daugherty MD, Mseeh F, Polanuyer, BM et al. (2002) From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J Bacteriol 184:4555-4572

    PubMed  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387-391

    PubMed  Google Scholar 

  • Green SM, Malik T, Giles IG, Drabble WT (1996) The purB gene of Escherichia coli K-12 is located in an operon. Microbiology 142:3219-3230

    PubMed  Google Scholar 

  • Gregson JM, Crain PF, Edmonds CG, Gupta R, Hashizume T, Phillipson DW, McCloskey JA (1993) Structure of Archaeal transfer RNA nucleoside GG-15 (2-Amino-4,7-dihydro-4-oxo-7-b-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyrimidine-5-carboximidamide (Archaeosine)). J Biol Chem 268:10076-10086

    PubMed  Google Scholar 

  • Grosjean H, Auxilien S, Constantinesco F, Simon C, Corda Y, Becker H F, Foiret D, Morin A, Jin YX, Fournier M, Fourrey JL (1996) Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review. Biochimie 78:488-501

    PubMed  Google Scholar 

  • Grosjean H, Constantinesco F, Foiret D, Benachenhou N (1995) A novel enzymatic path-way leading to 1-methylinosine modification in Haloferax volcanii tRNA. Nucleic Acids Res 23:4312-4319

    PubMed  Google Scholar 

  • Gustafsson C, Reid R, Greene PJ, Santi DV (1996) Identification of new RNA modifying enzymes by iterative genome search using known modifying enzymes as probes. Nucleic Acids Res 24:3756-3762

    PubMed  Google Scholar 

  • Gutgsell N, Englund N, Niu L, Kaya Y, Lane BG, Ofengand J (2000) Deletion of the Escherichia coli pseudouridine synthase gene truB blocks formation of pseudouridine 55 in tRNA in vivo, does not affect exponential growth, but confers a strong selective disadvantage in competition with wild-type cells. RNA 6:1870-1881

    PubMed  Google Scholar 

  • Hagervall TG, Björk GR (1984) Genetic mapping and cloning of the gene (trmC) responsible for the synthesis of tRNA (mnm5s2U)methyltransferase in Escherichia coli K12. Mol Gen Genet 196:201-207

    PubMed  Google Scholar 

  • Hagervall TG, Jonsson YH, Edmonds CG, McCloskey JA, Björk GR (1990) Chorismic acid, a key metabolite in modification of tRNA. J Bacteriol 172:252-259

    PubMed  Google Scholar 

  • Heath RJ, Rock CO (2000) A triclosan-resistant bacterial enzyme. Nature 406:145-146

    PubMed  Google Scholar 

  • Hopper AK, Phizicky EM (2003) tRNA transfers to the limelight. Genes Dev 17:162-180

    PubMed  Google Scholar 

  • Horie N, Hara-Yokoyama M, Yokoyama S, Watanabe K, Kuchino Y, Nishimura S, Miyazawa T (1985) Two tRNAIle1 species from an extreme thermophile, Thermus thermophilus HB8: effect of 2-thiolation of ribothymidine on the thermostability of tRNA. Biochemistry 24:5711-5715

    PubMed  Google Scholar 

  • Huynen MA, Snel B, Mering C, Bork P (2003) Function prediction and protein networks. Curr Opin Cell Biol 15:191-198

    PubMed  Google Scholar 

  • Jackman JE, Montange RK, Malik HS, Phizicky EM (2003) Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. RNA 9:574-585

    PubMed  Google Scholar 

  • Kambampati R, Lauhon C T (2003) MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry 42:1109-1117

    PubMed  Google Scholar 

  • Kammen, HO, Marvel CC, Hardy L, Penhoet EE (1988) Purification, structure, and properties of Escherichia coli tRNA pseudouridine synthase I. J Biol Chem 263:2255-2263

    PubMed  Google Scholar 

  • Kasai H, Kuchino Y, Nihei K, Nishimura S (1975a) Distribution of the modified nucleo-side Q and its derivatives in animal and plant transfer RNA's. Nucleic Acids Res 2:1931-1939

    PubMed  Google Scholar 

  • Kasai H, Ohashi Z, Harada F, Nishimura S, Oppenheimer NJ, Crain, PF, Liehr JG, von Min-den DL, McCloskey JA (1975b) Structure of the modified nucleoside Q isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine. Biochemistry 14:4198-4208

    PubMed  Google Scholar 

  • Katze JR, Basile B, McCloskey JA (1982) Queuine, a modified base incorporated post-transcriptionally into eukaryotic transfer RNA: wide distribution in nature. Science 216:55-56

    PubMed  Google Scholar 

  • Kaya Y, Ofengand J (2003) A novel unanticipated type of pseudouridine synthase with homologs in Bacteria,Archaea, and Eukarya. RNA 9:711-721

    PubMed  Google Scholar 

  • Kinzie SD, Thern B, Iwata-Reuyl D (2000) Mechanistic studies of the tRNA-modifying enzyme QueA: a chemical imperative for the use of AdoMet as a “ribosyl” donor. Org Lett 2:1307-1310

    PubMed  Google Scholar 

  • Kowalak JA, Dalluge JJ, McCloskey JA, Stetter KO (1994) The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry 33:7869-7876

    PubMed  Google Scholar 

  • Kowalak JA, Bruenger E, McCloskey JA (1995) Posttranscriptional modification of the central loop of domain V in Escherichia coli 23 S ribosomal RNA. J Biol Chem 270:17758-17764

    PubMed  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249-256

    PubMed  Google Scholar 

  • Lauhon C T (2002) Requirement for IscS in biosynthesis of all thionucleosides in Escherichia coli. J Bacteriol 184:6820-6829

    PubMed  Google Scholar 

  • Lauhon CT, Kambampati R (2000) The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD. J Biol Chem 275:20096-20103

    PubMed  Google Scholar 

  • Legrain P, Wojcik J, Gauthier J M (2001) Protein-protein interaction maps: a lead towards cellular functions. Trends Genet 17:346-352

    PubMed  Google Scholar 

  • Leinfelder W, Forchhammer K, Veprek B, Zehelein E, Bock A (1990) In vitro synthesis of selenocysteinyl-tRNA(UCA) from seryl-tRNA(UCA): involvement and characterization of the selD gene product. Proc Natl Acad Sci USA 87:543-547

    PubMed  Google Scholar 

  • Mihara H, Kato S, Lacourciere GM, Stadtman TC, Kennedy RA, Kurihara T, Tokumoto U, Takahashi Y, Esaki N (2002) The iscS gene is essential for the biosynthesis of 2-sele-nouridine in tRNA and the selenocysteine-containing formate dehydrogenase H. Proc Natl Acad Sci USA 99:6679-6683

    PubMed  Google Scholar 

  • Mittl PR, Grutter MG (2001) Structural genomics: opportunities and challenges. Curr Opin Chem Biol 5:402-408

    PubMed  Google Scholar 

  • Morris RC, Elliott MS (2001) Queuosine modification of tRNA: a case for convergent evolution. Mol Genet Metab 74:147-159

    PubMed  Google Scholar 

  • Motorin Y, Grosjean H (1999) Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme. RNA 5:1105-1118

    PubMed  Google Scholar 

  • Motorin Y, Grosjean H (2001) tRNA modification. Encyclopedia of life sciences. Nature publishing group/www.els.net

  • Mueller EG, Buck CJ, Palenchar PM, Barnhart LE, Paulson JL (1998) Identification of a gene involved in the generation of 4-thiouridine in tRNA. Nucleic Acids Res 26:2606-2610

    PubMed  Google Scholar 

  • Munch HJ, Thiebe R (1975) Biosynthesis of the nucleoside Y in yeast tRNAPhe: incorporation of the 3-amino-3-carboxypropyl-group from methionine. FEBS Lett 51:257-258

    PubMed  Google Scholar 

  • Muramatsu T, Nishikawa K, Nemoto F, Kuchino Y, Nishimura S, Miyazawa T, Yokoyama S (1988) Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 336:179-181

    PubMed  Google Scholar 

  • Nilsson K, Lundgren HK, Hagervall TG, Björk G R (2002) The cysteine desulfurase IscS is required for synthesis of all five thiolated nucleosides present in tRNA from Salmo-nella enterica serovar typhimurium. J Bacteriol 184:6830-6835

    PubMed  Google Scholar 

  • Nurse K, Wrzesinski J, Bakin A, Lane BG, Ofengand J (1995) Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli. RNA 1:102-112

    PubMed  Google Scholar 

  • Ny T, Björk GR (1980) Cloning and restriction mapping of the trmA gene coding for transfer ribonucleic acid (5-methyluridine)-methyltransferase in Escherichia coli K-12. J Bacteriol 142:371-379

    PubMed  Google Scholar 

  • Ohgi T, Kondo T, Goto T (1979) Total Synthesis of Optically Pure Nucleoside Q. Determination of Absolute Configuration of natural Nucleoside Q. J Am Chem Soc 101:3629-3633

    Google Scholar 

  • Okada N, Nishimura S (1977) Enzymatic Synthesis of Q* Nucleoside Containing Mannose in the Anticodon of tRNA: Isolation of a Novel Mannosyltransferase from a Cell-Free Extract of Rat Liver. Nucleic Acids Res 4:2931-2937

    PubMed  Google Scholar 

  • Okada N, Noguchi S, Nishimura S, Ohgi T, Goto T, Crain PF, McCloskey JA (1978) Structure determination of a nucleoside Q precursor isolated from E. coli tRNA: 7-(aminomethyl)-7-deazaguanosine. Nucleic Acids Res 5:2289-2296

    PubMed  Google Scholar 

  • Okada N, Noguchi S, Kasai H, Shindo-Okada N, Ohgi T, Goto T, Nishimura S (1979) Novel Mechanism of Post-transcriptional Modification of tRNA. J Biol Chem 254:3067-3073

    PubMed  Google Scholar 

  • Osterman A, Overbeek R (2003) Missing genes in metabolic pathways: a comparative genomics approach. Curr Opin Chem Biol 7:238-251

    PubMed  Google Scholar 

  • Overbeek R, et al. (2003) The ERGO Genome Analysis and Discovery System. Nucleic Acids Res 31:1-8

    Google Scholar 

  • Overbeek R, Fonstein M, D'Souza M, Pusch G D, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96:2896-2901

    PubMed  Google Scholar 

  • Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96:4285-4288

    PubMed  Google Scholar 

  • Perret V, Garcia A, Puglisi J, Grosjean H, Ebel JP, Florentz C, Giege R (1990) Conformation in solution of yeast tRNA(Asp) transcripts deprived of modified nucleotides. Biochimie 72:735-743

    PubMed  Google Scholar 

  • Persson BC (1993) Modification of tRNA as a regulatory device. Mol Microbiol 8:1011-1016

    PubMed  Google Scholar 

  • Persson BC, Gustafsson C, Berg DE, Björk GR (1992) The gene for a tRNA modifying enzyme, m5U54-methyltransferase, is essential for viability in Escherichia coli. Proc Natl Acad Sci USA 89:3995-3998

    PubMed  Google Scholar 

  • Persson BC, Jager G, Gustafsson C (1997) The spoU gene of Escherichia coli, the fourth gene of the spoT operon, is essential for tRNA (Gm18) 2 ¢-O-methyltransferase activity. Nucleic Acids Res 25:4093-4097

    PubMed  Google Scholar 

  • Raychaudhuri S, Niu L, Conrad J, Lane BG, Ofengand J (1999) Functional effect of deletion and mutation of the Escherichia coli ribosomal RNA and tRNA pseudouridine synthase RluA. J Biol Chem 274:18880-18886

    PubMed  Google Scholar 

  • Reader JS, Metzgar D, Schimmel P, de Crézy-Lagard V (2004) Identification of four genes necessary for biosynthesis of the modified nucleoside queuosine. J Biol Chem (in press)

    Google Scholar 

  • Reuter K, Slany R, Ullrich F, Kersten H (1991) Structure and organization of E. coli genes involved in biosynthesis of the Deazaguanine Derivative Queuine, a nutrient factor for Eukaryotes. J Bacteriol 173:2256-2264

    PubMed  Google Scholar 

  • Rodionov DA, Vitreschak AG, Mironov AA, Gelfand M S (2002) Comparative genomics of thiamin biosynthesis in procaryotes: new genes and regulatory mechanisms. J Biol Chem 277:48949-48959

    PubMed  Google Scholar 

  • Romanowski MJ, Bonanno JB, Burley SK (2002) Crystal structure of the Escherichia coli glucose-inhibited division protein B (GidB) reveals a methyltransferase fold. Proteins 47:563-567

    PubMed  Google Scholar 

  • Saunders NF, Thomas T, Curmi PM, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K et al. (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methano-coccoides burtonii. Genome Res 12:12

    Google Scholar 

  • Shindo-Okada N, Okada N, Ohgi T, Goto T, Nishimura S (1980) Transfer Ribonucleic Acid Guanine Transglycosylase isolated from rat liver. Biochemistry 19:395-400

    PubMed  Google Scholar 

  • Slany RK, Bosl M, Crain PF, Kersten H (1993) A new function of S-Adenosylmethionine: The ribosyl moiety of AdoMet is the precursor of the Cyclopentenediol moiety of the tRNA Wobble Base Queuine. Biochemistry 32:7811-7817

    PubMed  Google Scholar 

  • Slany RK, Bosl M, Kersten H (1994) Transfer and isomerization of the ribose moiety of AdoMet during the biosynthesis of queuosine tRNAs, a new unique reaction catalyzed by the QueA protein from Escherichia coli. Biochimie 76:389-393

    PubMed  Google Scholar 

  • Smit A, Mushegian A (2000) Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway. Genome Res 10:1468-1484

    PubMed  Google Scholar 

  • Smith C, Schmidt PG, Petsch J, Agris PF (1985) Nuclear magnetic resonance signal assignments of purified [13C]methyl-enriched yeast phenylalanine transfer ribonucleic acid. Biochemistry 24:1434-1440

    PubMed  Google Scholar 

  • Soma A, Ikeuchi Y, Kanemasa S, Koyabashi K, Ogawasara N, Ote T, Kato J, Watanabe K, Sekine Y, Suzuki T (2003) An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Mol Cell 12:689-98

    PubMed  Google Scholar 

  • Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097-1106

    PubMed  Google Scholar 

  • Sprinzl M, Hartmann T, Weber J, Blank J, Zeidler R (1989) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 17:r1-r67

    PubMed  Google Scholar 

  • Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Aids Res 26:148-153

    Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND Koonin E V (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22-28

    PubMed  Google Scholar 

  • Watanabe M, Matsuo M, Tanaka S, Akimoto H, Asahi S, Nishimura S, Katz JR, Hashizume T, Crain PF, McCloskey JA, Okada N (1997) Biosynthesis of Archaeosine, a Novel Derivative of 7-Deazaguanosine Specific to Archaeal tRNA, Proceeds via a Pathway Involving Base Replacement of the tRNA Polynucleotide Chain. J Biol Chem 272: 20146-20151

    PubMed  Google Scholar 

  • Westaway SK, Abelson J (1995) Splicing of tRNA Precursors. In: RajBhandary UL (ed) tRNA: structure, biosynthesis, and function. ASM Press, Washington, DC, pp79-92

    Google Scholar 

  • Wolf J, Gerber AP, Keller W (2002) tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J 21:3841-3851

    PubMed  Google Scholar 

  • Yokoyama S, Nishimura S (1995) Modified nucleosides and codon recognition. In: RajB-handary UL, Söll D (eds) tRNA: Structure, biosynthesis, and function. ASM Press, Washington, DC, pp 207-233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crécy-Lagard, V.d. (2008). Finding Missing tRNA Modification Genes: A Comparative Genomics Goldmine. In: Bujnicki, J.M. (eds) Practical Bioinformatics. Nucleic Acids and Molecular Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74268-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74268-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74267-8

  • Online ISBN: 978-3-540-74268-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics