Skip to main content

Predicting Functional Residues in DNA Glycosylases by Analysis of Structure and Conservation

  • Chapter
Practical Bioinformatics

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 15))

Almost every biochemist and molecular biologist with an interest in protein research confronts the question of the role played by individual amino acid residues in a specific polypeptide. The wide variety of experimental techniques available to address this question can be categorized into two general approaches: functional and structural. In the former case, the residue in question is chemically modified or mutated; in the latter, the relationships with neighboring residues are defined and biological function is inferred. Each approach has its advantages and limitations and the most accurate information is provided when both are used together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References (11)

  • Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, Hodges AK, Davies DR, David SS, Sampson JR et al (2002) Inherited variants of MYH associated with somatic G:CÆT:A mutations in colorectal tumors. Nat Genet 30:227-232

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-410

    CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402

    Article  CAS  PubMed  Google Scholar 

  • Aravind L, Walker DR, Koonin EV (1999) Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res 27:1223-1242

    Article  CAS  PubMed  Google Scholar 

  • Asahara H, Wistort PM, Bank JF, Bakerian RH, Cunningham RP (1989) Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry 28:4444-4449

    Article  CAS  PubMed  Google Scholar 

  • Begley TJ, Cunningham RP (1999) Methanobacterium thermoformicicum thymine DNA mismatch glycosylase: conversion of an N-glycosylase to an AP lyase. Protein Eng 12:333-340

    Article  CAS  PubMed  Google Scholar 

  • David SS, Williams SD (1998) Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem Rev 98:1221-1261

    Article  CAS  PubMed  Google Scholar 

  • Eisen JA, Hanawalt PC (1999) A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res 435:171-213

    CAS  PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995). DNA repair and mutagenesis. ASM Press, Washington, DC

    Google Scholar 

  • Fromme JC, Verdine GL (2002) Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM. Nat Struct Biol 9:544-52

    CAS  PubMed  Google Scholar 

  • Fromme JC, Verdine GL (2003) Structure of a trapped endonuclease III-DNA covalent intermediate. EMBO J 22:3461-3471

    Article  CAS  PubMed  Google Scholar 

  • Gilboa R, Zharkov DO, Golan G, Fernandes AS, Gerchman SE, Matz E, Kycia JH, Grollman AP, Shoham G (2002) Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA. J Biol Chem 277:19811-19816

    Article  CAS  PubMed  Google Scholar 

  • Goffin C, Ghuysen J-M (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62:1079-1093

    CAS  PubMed  Google Scholar 

  • Grollman AP, Johnson F, Tchou J, Eisenberg, M (1994) Recognition and repair of 8-oxoguanine and formamidopyrimidine lesions in DNA. Ann N Y Acad Sci 726:208-214

    Article  CAS  PubMed  Google Scholar 

  • Gu X (1999) Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 16:1664-1674

    CAS  PubMed  Google Scholar 

  • Gu X (2001) Maximum-likelihood approach for gene family evolution under functional divergence. Mol Biol Evol 18:453-464

    CAS  PubMed  Google Scholar 

  • Guan Y, Manuel RC, Arvai AS, Parikh SS, Mol CD, Miller JH, Lloyd RS, Tainer JA (1998) MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nat Struct Biol 5:1058-1064

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Hatahet Z, Blaisdell JO, Melamede RJ, Wallace SS (1997a) Escherichia coli endonuclease VIII: cloning, sequencing and overexpression of the nei structural gene and characterization of nei and nei nth mutants. J Bacteriol 179:3773-3782

    CAS  PubMed  Google Scholar 

  • Jiang D, Hatahet Z, Melamede RJ, Kow YW, Wallace SS (1997b) Characterization of Escherichia coli endonuclease VIII. J Biol Chem 272:32230-32239

    Article  Google Scholar 

  • Karakaya A, Jaruga P, Bohr VA, Grollman AP, Dizdaroglu, M (1997) Kinetics of excision of purine lesions from DNA by Escherichia coli Fpg protein. Nucleic Acids Res 25:474-479

    Article  CAS  PubMed  Google Scholar 

  • Kavli B, Slupphaug G, Mol CD, Arvai AS, Peterson SB, Tainer JA, Krokan H E (1996) Excision of cytosine and thymine from DNA by mutants of human uracil-DNA glycosylase. EMBO J 15:3442-3447

    CAS  PubMed  Google Scholar 

  • Kuo C-F, McRee DE, Fisher CL, O'Handley SF, Cunningham RP, Tainer JA (1992) Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III. Science 258:434-440

    Article  CAS  PubMed  Google Scholar 

  • Labahn J, Schärer OD, Long A, Ezaz-Nikpay K, Verdine GL, Ellenberger TE (1996) Structural basis for the excision repair of alkylation-damaged DNA. Cell 86:321-329

    Article  CAS  PubMed  Google Scholar 

  • Lavrukhin OV, Lloyd RS (2000) Involvement of phylogenetically conserved acidic amino acid residues in catalysis by an oxidative DNA damage enzyme formamidopyrimidine glycosylase. Biochemistry 39:15266-15271

    Article  CAS  PubMed  Google Scholar 

  • Livingstone CD, Barton GJ (1993) Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput Appl Biosci 9:745-756

    CAS  PubMed  Google Scholar 

  • Livingstone CD, Barton GJ (1996) Identification of functional residues and secondary structure from protein multiple sequence alignment. Methods Enzymol 266:497-512

    Article  CAS  PubMed  Google Scholar 

  • McCullough AK, Dodson ML, Lloyd RS (1999) Initiation of base excision repair: glycosylase mechanisms and structures. Annu Rev Biochem 68:255-285

    Article  CAS  PubMed  Google Scholar 

  • Melamede RJ, Hatahet Z, Kow YW, Ide H, Wallace SS (1994) Isolation and characterization of endonuclease VIII from Escherichia coli. Biochemistry 33:1255-1264

    Article  CAS  PubMed  Google Scholar 

  • Michaels ML, Pham L, Nghiem Y, Cruz C, Miller JH (1990) MutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III. Nucleic Acids Res 18:3841-3845

    Article  CAS  PubMed  Google Scholar 

  • Mol CD, Arvai AS, Begley TJ, Cunningham RP, Tainer JA (2002) Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases. J Mol Biol 315:373-384

    Article  CAS  PubMed  Google Scholar 

  • Nash HM, Bruner SD, Shärer OD, Kawate T, Addona TA, Spooner E, Lane WS, Verdine GL (1996) Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol 6:968-980

    Article  CAS  PubMed  Google Scholar 

  • O'Connor TR, Graves RJ, de Murcia G, Castaing B, Laval J (1993) Fpg protein of Escherichia coli is a zinc finger protein whose cysteine residues have a structural and/or functional role. J Biol Chem 268:9063-9070

    PubMed  Google Scholar 

  • Parikh SS, Mol CD, Slupphaug G, Bharati S, Krokan HE, Tainer JA (1998) Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J 17:5214-5226

    Article  CAS  PubMed  Google Scholar 

  • Piersen CE, Prince MA, Augustine ML, Dodson ML, Lloyd RS (1995) Purification and cloning of Micrococcus luteus ultraviolet endonuclease, an N-glycosylase/abasic lyase that proceeds via an imino enzyme-DNA intermediate. J Biol Chem 270:23475-23484

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425

    CAS  PubMed  Google Scholar 

  • Serre L, Pereira de Jesus K, Boiteux S, Zelwer C, Castaing B (2002) Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. EMBO J 21:2854-2865

    Article  CAS  PubMed  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631-637

    Article  CAS  PubMed  Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22-28

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR (1986) Classification of amino acid conservation. J Theor Biol 119:205-218

    Article  CAS  PubMed  Google Scholar 

  • Tchou J, Bodepudi V, Shibutani S, Antoshechkin I, Miller J, Grollman AP, Johnson F (1994) Substrate specificity of Fpg protein.Recognition and cleavage of oxidatively damaged DNA. J Biol Chem 269:15318-15324

    CAS  PubMed  Google Scholar 

  • Tchou J, Grollman AP (1995) The catalytic mechanism of Fpg protein. Evidence for a Schiff base intermediate and amino terminus localization of the catalytic site. J Biol Chem 270:11671-11677

    Article  Google Scholar 

  • Tchou J, Kasai H, Shibutani S, Chung M-H, Laval J, Grollman AP, Nishimura S (1991) 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci USA 88:4690-4694

    Article  CAS  PubMed  Google Scholar 

  • Tchou J, Michaels ML, Miller JH, Grollman AP (1993) Function of the zinc finger in Escherichia coli Fpg protein. J Biol Chem 268:26738-26744

    CAS  PubMed  Google Scholar 

  • Thayer MM, Ahern H, Xing D, Cunningham RP, Tainer JA (1995) Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J 14:4108-4120

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680

    Article  CAS  PubMed  Google Scholar 

  • von Hippel PH, Berg OG (1989) Facilitated target location in biological systems. J Biol Chem 264:675-678

    CAS  PubMed  Google Scholar 

  • Wang Y, Gu X (2001) Functional divergence in the caspase gene family and altered functional constraints: statistical analysis and prediction. Genetics 158:1311-1320

    CAS  PubMed  Google Scholar 

  • Zaika EI, Perlow RA, Matz E, Broyde S, Gilboa R, Grollman AP, Zharkov DO (2004) Mutational analysis of substrate discrimination by formamidopyrimidine-DNA glycosylase. J Biol Chem (in press)

    Google Scholar 

  • Zharkov DO, Golan G, Gilboa R, Fernandes AS, Gerchman SE, Kycia JH, Rieger RA, Grollman AP, Shoham G (2002) Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate. EMBO J 21:789-800

    Article  CAS  PubMed  Google Scholar 

  • Zharkov DO, Grollman AP (2002) Combining structural and bioinformatics methods for the analysis of functionally important residues in DNA glycosylases. Free Radic Biol Med 32:1254-1263

    Article  CAS  PubMed  Google Scholar 

  • Zharkov DO, Rieger RA, Iden CR, Grollman AP (1997) NH2-terminal proline acts as a nucleophile in the glycosylase/AP-lyase reaction catalyzed by Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) protein. J Biol Chem 272:5335-5341

    Article  CAS  PubMed  Google Scholar 

  • Zharkov DO, Shoham G, Grollman AP (2003) Structural characterization of the Fpg family of DNA glycosylases. DNA Repair 2:839-862

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zharkov, D.O. (2008). Predicting Functional Residues in DNA Glycosylases by Analysis of Structure and Conservation. In: Bujnicki, J.M. (eds) Practical Bioinformatics. Nucleic Acids and Molecular Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74268-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74268-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74267-8

  • Online ISBN: 978-3-540-74268-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics