Skip to main content

Schema-Based Design and the AKIRA Schema Language: An Overview

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4520))

Abstract

We present a theoretical analysis of schema-based design (SBD), a methodology for designing autonomous agent architectures. We also provide an overview of the AKIRA Schema Language (AKSL), which permits to design schema-based architectures for anticipatory behavior experiments and simulations. Several simulations using AKSL are reviewed, highlighting the relations between pragmatic and epistemic aspects of behavior. Anticipation is crucial in realizing several functionalities with AKSL, such as selecting actions, orienting attention, categorizing and grounding declarative knowledge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. akira,(2003), http://www.akira-project.org/

  2. Arbib, M.: Levels of modelling of mechanisms of visually guided behavior. Behavioral and Brain Science 10, 407–465 (1987)

    Article  Google Scholar 

  3. Arbib, M.: Schema theory. In: Shapiro, S. (ed.) Encyclopedia of Artificial Intelligence, 2nd edn. vol. 2, pp. 1427–1443. Wiley, Chichester, UK (1992)

    Google Scholar 

  4. Arbib, M.A.: The metaphorical brain 2: Neural networks and beyond. Wiley, New York (1989)

    MATH  Google Scholar 

  5. Arkin, R., Ali, K., Weitzenfeld, A., Cervantes-Prez, F.: Behavioral models of the praying mantis as a basis for robotic behavior. Robotics and Autonomous Systems 32(1), 39–60 (2000)

    Article  Google Scholar 

  6. Arkin, R.C.: Behavior-Based Robotics. The MIT Press, Cambridge (1998)

    Google Scholar 

  7. Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–600 (1999)

    Google Scholar 

  8. Bartlett, F.C.: Remembering. Cambridge University Press, Cambridge (1932)

    Google Scholar 

  9. Bates, E.: The Emergence of Symbols. Academic Press, London (1979)

    Google Scholar 

  10. Beer, R.D.: Intelligence as Adaptive Behavior: An Eperiment in Computational Neuroethology. Academic Press, San Diego (1990)

    Google Scholar 

  11. Bickhard, M.H.: Levels of representationality. Journal of Experimental and Theoretical Artificial Intelligence 10(2), 179–215 (1998)

    Article  Google Scholar 

  12. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47(47), 139–159 (1991)

    Article  Google Scholar 

  13. Butz, M.V.: Anticipatory learning classifier systems. Kluwer Academic Publishers, Boston, MA (2002)

    MATH  Google Scholar 

  14. Crabbe, F.L.: Optimal and non-optimal compromise strategies in action selection. In: Proceedings of the Eighth International Conference on Simulation of Adaptive Behavior (2004)

    Google Scholar 

  15. Damasio, A.R.: Descartes’ Error: Emotion, Reason and the Human Brain. Grosset/Putnam, New York, 1994. trad. it. di Cartesio, L., Adelphi, Milano (1999)

    Google Scholar 

  16. Davidsson, P.: A framework for preventive state anticipation. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS (LNAI), vol. 2684, pp. 151–166. Springer, Heidelberg (2003)

    Google Scholar 

  17. Demiris, Y.: Prediction of intent in robotics and multi-agent systems. to appear in Cognitive Processing (2007)

    Google Scholar 

  18. Demiris, Y., Khadhouri, B.: Hierarchical attentive multiple models for execution and recognition (hammer). Robotics and Autonomous Systems Journal 54, 361–369 (2005)

    Article  Google Scholar 

  19. Desmurget, M., Grafton, S.: Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci. 4, 423–431 (2000)

    Article  Google Scholar 

  20. Doya, K.: Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol 10(6), 732–739 (December 2000)

    Article  Google Scholar 

  21. Drescher, G.L.: Made-Up Minds: A Constructivist Approach to Artificial Intelligence. MIT Press, Cambridge, MA (1991)

    MATH  Google Scholar 

  22. Fleischer, J.G.: Neural correlates of anticipation in cerebellum, basal ganglia, and hippocampus. In: Butz, M.V., et al. (eds.) ABiALS 2006, LNAI, vol. 4520, pp. 128–152 (2007)

    Google Scholar 

  23. Frith, C.D., Blakemore, S.J., Wolpert, D.M.: Abnormalities in the awareness and control of action. PhilosTrans R Soc Lond B Biol Sci  355(1404), 1771–1788 (2000)

    Article  Google Scholar 

  24. Gallese, V., Metzinger, T.: Motor ontology: The representational reality of goals, actions, and selves. Philosophical Psychology 13(3), 365–388 (2003)

    Article  Google Scholar 

  25. Gross, H.-M., Volker, S., Torsten, S.: A neural architecture for sensorimotor anticipation. Neural Networks 12, 1101–1129 (1999)

    Article  Google Scholar 

  26. Grush, R.: The emulation theory of representation: motor control, imagery, and perception. Behav. Brain Sci. 27(3), 377–396 (2004)

    Google Scholar 

  27. Haruno, M., Wolpert, D., Kawato, M.: Hierarchical mosaic for movement generation. In: Ono, T., Matsumoto, G., Llinas, R., Berthoz, A., Norgren, H., Tamura, R. (eds.) Excepta Medica International Congress Series, Elsevier Science, Amsterdam (2003)

    Google Scholar 

  28. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences 6, 242–247 (2002)

    Article  Google Scholar 

  29. Hoffmann, H.: Perception through visuomotor anticipation in a mobile robot. Neural Networks 20, 22–33 (2007)

    Article  MATH  Google Scholar 

  30. Hoffmann, J.: Anticipatory behavioral control. In: Butz, M.V., Sigaud, O., Gerard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems: Foundations, Theories, and Systems, pp. 44–65. Springer-Verlag, Berlin Heidelberg (2003)

    Google Scholar 

  31. Holland, J., Holyoak, K., Nisbett, R., Thagard, P.: Induction: Processes of Inference, Learning, and Discovery. MIT Press, Cambridge, Massachussets (1986)

    Google Scholar 

  32. ikaros (2002), http://www.lucs.lu.se/IKAROS

  33. irrlicht (2003), http://irrlicht.sourceforge.net/

  34. James, W.: The Principles of Psychology. Dover Publications, New York (1890)

    Google Scholar 

  35. Johansson, B., Balkenius, C.: An experimental study of anticipation in robot navigation. In: Butz, M.V., et al. (eds.) ABiALS 2006, LNAI, vol. 4520, pp. 128–152 (2007)

    Google Scholar 

  36. Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(1), 35–45 (1960)

    Google Scholar 

  37. Lyons, D.M., Arbib, M.A.: A formal model of computation for sensory-based robotics. IEEE Journal of Robotics and Automation 5(3), 280–293 (1989)

    Article  Google Scholar 

  38. Maes, P.: Situated agents can have goals. In: Maes, P. (ed.) Designing Autonomous Agents, pp. 49–70. MIT Press, Cambridge (1990)

    Google Scholar 

  39. Mccauley, L.: Neural schemas: A mechanism for autonomous action selection and dynamic motivation. In: the 3rd WSES Neural Networks and Applications Conference (2002)

    Google Scholar 

  40. Miall, R.C., Wolpert, D.M.: Forward models for physiological motor control. Neural Networks 9(8), 1265–1279 (1996)

    Article  MATH  Google Scholar 

  41. Middleton, F.A., Strick, P.L.: Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42(2), 183–200 (2000)

    Article  Google Scholar 

  42. Miller, G.A., Galanter, E., Pribram, K.H.: Plans and the Structure of Behavior. Holt, Rinehart and Winston, New York (1960)

    Google Scholar 

  43. Minsky, M.: The Society of Mind. Simon & Schuster (1988)

    Google Scholar 

  44. Neisser, U.: Cognition and reality. Freeman, San Francisco, CA (1976)

    Google Scholar 

  45. Newell, A., Simon, H.A.: Human problem solving. Prentice-Hall, Englewood Cliffs, NJ (1972)

    Google Scholar 

  46. Norman, D.A., Shallice, T.: Attention to action: Willed and automatic control of behaviour. In: Davidson, R.J., Schwartz, G.E., Shapiro, D. (eds.) Consciousness and Self-Regulation: Advances in Research and Theory, Plenum Press, New York (1986)

    Google Scholar 

  47. Pezzulo, G., Calvi, G.: A schema based model of the praying mantis. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J., Marocco, D., Miglino, O., Meyer, J.-A., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 211–223. Springer Verlag, Heidelberg (2006)

    Chapter  Google Scholar 

  48. Pezzulo, G., Calvi, G.: Toward a perceptual symbol system. In: Proceedings of the Sixth International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems. Lund University Cognitive Science Studies 118 (2006)

    Google Scholar 

  49. Pezzulo, G., Calvi, G.: Designing modular architectures in the framework akira. To appear in Multiagent and Grid Systems 3(1) (2007)

    Google Scholar 

  50. Pezzulo, G., Calvi, G., Castelfranchi, C.: Dipra: Distributed practical reasoning architecture. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, pp. 1458–1464 (2007)

    Google Scholar 

  51. Pezzulo, G., Calvi, G., Ognibene, D., Lalia, D.: Fuzzy-based schema mechanisms in akira. In: CIMCA 2005. Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Washington, DC, USA, vol. 2, pp. 146–152. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  52. Pezzulo, G., Castelfranchi, C.: The symbol detachment problem. Cognitive Processing (to appear, 2007)

    Google Scholar 

  53. Piaget, J.: The Construction of Reality in the Child. Ballentine (1954)

    Google Scholar 

  54. Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci 2(1), 79–87 (January 1999)

    Article  Google Scholar 

  55. Roy, D.: Semiotic schemas: a framework for grounding language in action and perception. Artificial Intelligence 167(1-2), 170–205 (2005)

    Article  Google Scholar 

  56. Saffiotti, A.: Handling uncertainty in control of autonomous robots. In: Artificial Intelligence Today, pp. 381–407 (1999)

    Google Scholar 

  57. Schank, R.C., Abelson, R.P.: Scripts, Plans, Goals and Understanding: an Inquiry into Human Knowledge Structures. L. Erlbaum, Hillsdale (1977)

    MATH  Google Scholar 

  58. Schultz, W.: Predictive reward signal of dopamine neurons. Journal of Neurophysiology 80, 1–27 (1998)

    Google Scholar 

  59. Selfridge, O.: The Mechanisation of Thought Processes, chapter Pandemonium: A paradigm for learning, vol 10, pp. 511–529. National Physical Laboratory Symposia. Her Majesty’s Stationary Office, London (1959)

    Google Scholar 

  60. Shapiro, D., Schmidt, R.: The schema theory: Recent evidence & developmental implications. In: Clark, J.K.J. (ed.) The development of movement control and co-ordination, Wiley, New York (1982)

    Google Scholar 

  61. Smith, O.J.M.: A controller to overcome dead time. ISA Journal 6(2), 28–33 (1959)

    Google Scholar 

  62. Tani, J.: Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Netw. 16(1), 11–23 (January 2003)

    Article  Google Scholar 

  63. Tani, J., Ito, M., Sugita, Y.: Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using rnnpb. Neural Netw. 17(8-9), 1273–1289 (2004)

    Article  Google Scholar 

  64. Tani, J., Nolfi, S.: Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. Neural Netw. 12(7-8), 1131–1141 (October 1999)

    Article  Google Scholar 

  65. Weitzenfeld, A., Peguero, O., Gutiérrez, S.: NSL/ASL: Distributed simulation of modular neural networks. In: MICAI, pp. 326–337 (2000)

    Google Scholar 

  66. Wolpert, D.M., Gharamani, Z., Jordan, M.: An internal model for sensorimotor integration. Science 269, 1179–1182 (1995)

    Article  Google Scholar 

  67. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11(7-8), 1317–1329 (1998)

    Article  Google Scholar 

  68. Ziemke, T., Jirenhed, D.-A., Hesslow, G.: Internal simulation of perception: a minimal neuro-robotic model. Neurocomputing 68, 85–104 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin V. Butz Olivier Sigaud Giovanni Pezzulo Gianluca Baldassarre

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pezzulo, G., Calvi, G. (2007). Schema-Based Design and the AKIRA Schema Language: An Overview. In: Butz, M.V., Sigaud, O., Pezzulo, G., Baldassarre, G. (eds) Anticipatory Behavior in Adaptive Learning Systems. ABiALS 2006. Lecture Notes in Computer Science(), vol 4520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74262-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74262-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74261-6

  • Online ISBN: 978-3-540-74262-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics