Skip to main content

Automatic Closed Edge Detection Using Level Lines Selection

  • Conference paper
Book cover Image Analysis and Recognition (ICIAR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4633))

Included in the following conference series:

Abstract

This paper presents a closed edge detection method based on a level lines selection approach. The proposed method is based on an unsupervised probabilistic scheme using an a contrario method. A level line is considered meaningful if its contrast and length is unlikely to be due to chance. Besides being unsupervised, this method exploits a tree structure. The first step of the proposed approach is to reduce the meaningful level lines set using this hierarchical structure. Compared with a previous method using the same principle, our method achieve a 67% reduction rate of irrelevant levels lines. The second step of the proposed approach illustrates the high flexibility of using closed edge boundaries such as levels lines. Using a rather simple curvature analysis, the proposed method detects anatomical structures boundaries from CT scan images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Torre, V., Poggio, T.: On edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 8, 147–153 (1986)

    Google Scholar 

  2. Marr, D., Hildreth, E.: Thoery of edge detection. Proc. Rpyal Soc. London 207-B, 187–217 (1980)

    Article  Google Scholar 

  3. Haralick, R.: Digital step edges from zero crossing of second directionnal derivatives. IEEE Trans. on Pattern Analysis and Machine Intelligence 6, 58–68 (1984)

    Google Scholar 

  4. Hueckel, M.: An operator which locates edges in digitized pictures. J. Ass. Comp. Mach. 18, 113–125 (1971)

    MATH  Google Scholar 

  5. Canny, J.: A computationnal approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)

    Google Scholar 

  6. Deriche, R.: Using canny’s criteria to derive recursively implemented optimal edge detector. Int. J. Computer Vision 1, 167–187 (1987)

    Article  Google Scholar 

  7. Kanizsa, G.: La grammaire du Voir. Diderot (1996)

    Google Scholar 

  8. Martelli, A.: Edge detection using heuristic search methods. Comp. Graph. and Image Proc. 1, 169–182 (1972)

    Article  MathSciNet  Google Scholar 

  9. Montanari, U.: On the optimal detection of curves in noisy images. Com. ACM 14, 335–345 (1971)

    Article  MATH  Google Scholar 

  10. Giraudon, G.: Chainage efficace des contours. Tech. Rep. 605, INRIA (1987)

    Google Scholar 

  11. Kass, M., Witkin, A., Terzopoulos, D.: Active contour models. Int. J. Comp. Vision 1, 321–331 (1988)

    Article  Google Scholar 

  12. Blake, A., Zisserman, A.: Active Contours. Springer, Heidelberg (1998)

    Google Scholar 

  13. Osher, S., Sethian, J.: Front propagating with curvature dependant speed: algorithm based on the hamilton-jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sethian, J.: Level-set methods. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  15. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vision 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  16. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  17. Caselles, V., Coll, B., Morel, J.-M.: Topographic maps and local contrast changes in natural images. International Journal of Computer Vision 33, 5–27 (1999)

    Article  Google Scholar 

  18. Desolneux, A., Moisan, L., Morel, J.: Edge detection by helmohltz principle. International Journal of Computer Vision 14, 271–284 (2001)

    MATH  Google Scholar 

  19. Cao, F., Mus, P., Sur, F.: Extracting meaningful curves from images. Tech. Rep. 5067, INRIA (December 2003)

    Google Scholar 

  20. Duncan, J., Ayache, N.: Medical image analysis: progress over two decades and the challenges ahead. IEEE Trans. Pattern Anal. Machine Intell. 22, 85–106 (2000)

    Article  Google Scholar 

  21. Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful alignments. International Journal of Computer Vision 40, 7–23 (2000)

    Article  MATH  Google Scholar 

  22. Almansa, A., Desolneux, A., Vamech, S.: Vanishing points detection without any a priori information. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 502–507 (2003)

    Article  Google Scholar 

  23. Desolneux, A., Moisan, L., Morel, J.-M.: A grouping principle and four applications. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(4), 508–513 (2003)

    Article  Google Scholar 

  24. Musé, P., Sur, F., Cao, F., Gousseau, Y.: Unsupervised thresholds for shape matching. In: Proceedings of the IEEE International Conference on Image Processing, Barcelona, Spain, pp. 647–650. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  25. Hurtut, T., Dalazoana, H., Gousseau, Y., Schmitt, F.: Spatial color image retrieval without segmentation using thumbnails and the earth mover’s distance. In: CGIV, Leeds, England (June 2006)

    Google Scholar 

  26. Murphey, M., Quale, J., Martin, N., Bramble, J., Cook, L., Dwyer, S.: Computed radiography in musculoskeletal imaging: state of the art. American Journal of Roentgenology 158(1), 19–27 (1992)

    Google Scholar 

  27. Pizurica, A., Wink, A., Vansteenkiste, E., Philips, W., BTM, J.: A Review of Wavelet Denoising in MRI and Ultrasound Brain Imaging. Current Medical Imaging Reviews 2, 247–260 (2006)

    Article  Google Scholar 

  28. Scharcanski, J., Jung, C., Clarke, R.: Adaptive image denoising using scale and space consistency. Image Processing, IEEE Transactions on 11(9), 1092–1101 (2002)

    Article  Google Scholar 

  29. Lee, J.: Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence (1980)

    Google Scholar 

  30. Kottamasu, S., Kuhns, L.: Musculoskeletal computed radiography in children: scatter reduction and improvement in bony trabecular sharpness using air gap placement of the imaging plate. Pediatric Radiology 27(2), 119–123 (1997)

    Article  Google Scholar 

  31. Banvard, R.: The Visible Human Project® Image Data Set From Inception to Completion and Beyond. In: Proceedings CODATA (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mohamed Kamel Aurélio Campilho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hurtut, T., Cheriet, F. (2007). Automatic Closed Edge Detection Using Level Lines Selection. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2007. Lecture Notes in Computer Science, vol 4633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74260-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74260-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74258-6

  • Online ISBN: 978-3-540-74260-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics