Skip to main content

Regulation of Iron and Zinc Uptake and Translocation in Rice

  • Chapter
Book cover Rice Biology in the Genomics Era

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 62))

Higher plants take up essential nutrients from the rhizosphere, in which several nutrients tend to be insoluble, thus limiting their availability. Deficiencies of the micronutrients Fe and Zn constitute major factors in low crop yield. Based on their mechanisms of Fe acquisition from the soil, higher plants can be grouped into two categories: Strategy-I and Strategy-II plants (Römheld and Marschner 1986). Plants in the second group, graminaceous plants, secrete mugineic acid family phytosiderophores (MAs), which solubilize Fe(III) in the rhizosphere, and the resulting Fe(III)-MA complexes are taken up by roots through a specific transporter in the plasma membrane (Takagi 1976; Curie et al. 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bashir K, Inoue H, Nagasaka S, et al. (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402

    Article  PubMed  CAS  Google Scholar 

  • Brown JC, Chaney RL (1971) Effect of iron on the transport of citrate into the xylem of soybean and tomatoes. Plant Physiol 47:836–840

    Article  PubMed  CAS  Google Scholar 

  • Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning of iron-regulated metal transporter from rice. J Exp Bot 53:1677–1682

    Article  PubMed  CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe 1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    Article  PubMed  CAS  Google Scholar 

  • Durrett T, Gassmann D, Rogers E (2006) Functional characterization of FRD3, a novel organic acid effluxer involved in iron homeostasis. In: Abstracts 13th Int Symp on Iron Nutrition and Interactions in Plants, Montpellier, p. 43

    Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    Article  PubMed  CAS  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224

    Article  PubMed  CAS  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    PubMed  CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  PubMed  CAS  Google Scholar 

  • Higuchi K, Watanabe S, Takahashi M, et al. (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25:159–167

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Suzuki M, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004a) Rice nicotianamine aminotransferase gene (NAAT1) is expressed in cells involved in long-distance transport of iron. In: Abstracts 12th Int Symp on Iron Nutrition and Interactions in Plants, Tokyo, p 204

    Google Scholar 

  • Inoue H, Suzuki M, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004b) A rice FRD3-like (OsFRDL1) gene is expressed in the cells involved in long-distance transport. Soil Sci Plant Nutr 50:1133–1140

    CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, et al. (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, et al. (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S (2001) In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212:864–871

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Nakayama Y, Itai RN, et al. (2003a) Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J 36:780–793

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Yoshihara T, Jiang T, et al. (2003b) Combined deficiency of iron and other divalent cations mitigates the symptoms of iron deficiency in tobacco plants. Physiol Plant 119:400–408

    Article  CAS  Google Scholar 

  • Kobayashi T, Nakayama Y, Takahashi M, et al. (2004) Construction of artificial promoters highly responsive to iron deficiency. Soil Sci Plant Nutr 50:1167–1175

    CAS  Google Scholar 

  • Kobayashi T, Suzuki M, Inoue H, et al. (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56:1305–1316

    Article  PubMed  CAS  Google Scholar 

  • Koike S, Inoue H, Mizuno D, et al. (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    Article  PubMed  CAS  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  PubMed  CAS  Google Scholar 

  • Ling HQ, Koch G, Bäumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098–7103

    Article  PubMed  CAS  Google Scholar 

  • Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci USA 99:13938–13943

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Nomoto K (1993) Two related biosynthetic pathways of mugineic acids in Gramineous plants. Plant Physiol 102:373–378

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Shinada T, Matsuda C, Nomoto K (1995) Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. J Biol Chem 270:16549–16554

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Taketa S, Chang YC, et al. (1999) Genes controlling hydroxylations of phytosiderophores are located on different chromosomes in barley (Hordeum vulgare L.). Planta 207:590–596

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK (2003) Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol 132:1989–1997

    Article  PubMed  CAS  Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2:250–253

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Nishizawa N (1987) Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant Cell Physiol 28:1081–1092

    CAS  Google Scholar 

  • Mori S, Nishizawa N, Hayashi H, Chino M, Yoshimura E, Ishihara J (1991) Why are young rice plants highly susceptible to iron deficiency? Plant Soil 130:143–156

    Article  CAS  Google Scholar 

  • Murakami T, Ise K, Hayakawa M, Kamei S, Takagi S (1989) Stabilities of metal complexes of mugineic acids and their specific affinities for iron(III). Chem Lett 12:2137–2140

    Article  Google Scholar 

  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron(III)-phytosiderophore in barley roots. Plant J 46:563–572

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi H, Okumura N, Umehara Y, Nishizawa NK, Chino M, Mori S (1993) Expression of a gene specific for iron deficiency (Ids3) in the roots of Hordeum vulgare. Plant Cell Physiol 34:401–410

    PubMed  CAS  Google Scholar 

  • Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S (2000) Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44:199–207

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469

    Article  CAS  Google Scholar 

  • Negishi T, Nakanishi H, Yazaki J, et al. (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30:83–94

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa NK (2006) OsYSL family transporters involved in the uptake and translocation of iron in rice plants. In: Abstracts 13th Int Symp on Iron Nutrition and Interactions in Plants, Montpellier, p 37

    Google Scholar 

  • Nishizawa N, Mori S (1987) The particular vesicle appearing in barley root cells and its relation to mugineic acid secretion. J. Plant Nutr 10:1013–1020

    Article  CAS  Google Scholar 

  • Noma M, Noguchi M (1976) Occurrence of nicotianamine in higher plants. Phytochemistry 15:1701–1702

    Article  CAS  Google Scholar 

  • Nozoye T, Itai RN, Nagasaka S, et al. (2004) Diurnal changes in the expression of genes that participate in phytosiderophore synthesis in rice. Soil Sci Plant Nutr 50:1125–1131

    CAS  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H, et al. (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2878

    Article  PubMed  CAS  Google Scholar 

  • Okumura N, Nishizawa NK, Umehara Y, et al. (1994) A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Plant Mol Biol 25:705–719

    Article  PubMed  CAS  Google Scholar 

  • Petit JM, van Wuytswinkel O, Briat JF, Lobréaux S (2001) Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of Atfer1 and Zmfer1 plant ferritin genes by iron. J Biol Chem 276:5584–5590

    Article  PubMed  CAS  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    Article  PubMed  CAS  Google Scholar 

  • Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Yellow stripe 1. Expanded roles for the maize iron-phytosiderophore transporter. Plant Physiol 135:112–120

    Article  PubMed  CAS  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophore in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed  Google Scholar 

  • Sauter M, Cornell KA, Beszteri S, Rzewuski G (2004) Functional analysis of methylthiorivose kinase genes in plans. Plant Physiol 136:4061–4071

    Article  PubMed  CAS  Google Scholar 

  • Sauter M, Lorbiecke R, Yang BQ, Pochapsky TC, Rzewuski G (2005) The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. Plant J 44:718–729

    Article  PubMed  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    Article  PubMed  CAS  Google Scholar 

  • Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S (1990) Biosynthesis of phytosiderophores. In-vitro biosynthesis of 2-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol 93:1497–1503

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Ishimaru Y, Inoue H, et al. (2005) 22k microarray analysis of Zn-deficient rice. In: Abstracts Symp on Plant Nutrition for Food Security, Human Health and Environmental Protection, Beijing, pp. 134–135

    Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, et al. (2006a) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Tsukamoto T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006b) The contribution of mugineic acids in transport and absorption of Zn in graminaceous plants. Plant Cell Physiol 47:s156

    Article  Google Scholar 

  • Takagi S (1976) Naturally occurring iron-chelating compounds in oat- and rice-root washing. I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22:423–433

    CAS  Google Scholar 

  • Takagi S, Nomoto K, Takemoto S (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477

    Article  CAS  Google Scholar 

  • Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol 121:947–956

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotech 19:466–469

    Article  CAS  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, et al. (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Inoue H, Ushio Y, Nakanishi H, Mori S, Nishizawa NK (2004) Role of nicotianamine and deoxymugineic acid in plant reproductive development. In: Abstracts 12th Int Symp on Iron Nutrition and Interactions in Plants, Tokyo, p. 220

    Google Scholar 

  • Tiffin LO (1966) Iron translocation: II. Citrate/iron ratios in plant stem exudates. Plant Physiol 41:515–518

    Article  PubMed  CAS  Google Scholar 

  • von Wirén N, Mori S, Marschner H, Römheld V (1994) Iron inefficiency in maize mutant ys1 (Zea mays L. cv yellow-stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106:71–77

    Google Scholar 

  • von Wirén N, Marschner H, Römheld V (1996) Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol 111:1119–1125

    Google Scholar 

  • Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    Article  CAS  Google Scholar 

  • Yoshihara T, Kobayashi T, Goto F, et al. (2003) Regulation of the iron-deficiency responsive gene, Ids2, of barley in tobacco. Plant Biotech 20:33–41

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kobayashi, T., Nishizawa, N.K. (2008). Regulation of Iron and Zinc Uptake and Translocation in Rice. In: Hirano, HY., Sano, Y., Hirai, A., Sasaki, T. (eds) Rice Biology in the Genomics Era. Biotechnology in Agriculture and Forestry, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74250-0_24

Download citation

Publish with us

Policies and ethics