Skip to main content

Genetics of Speciation in Rice

  • Chapter
Rice Biology in the Genomics Era

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 62))

One of the central issues of evolutionary biology is the origin of the species, although the definition of species is an endlessly debated issue (Coyne and Orr 2004). According to the biological species concept (BSC), a species is a group of an actually or potentially interbreeding natural population, which is reproductively isolated from other such groups (Mayr 1942). No concept of speciation could be complete without a genetic interpretation of the rise of isolating mechanisms. Fitness reduction can range from maladaptation to inviability or sterility. The loci that underlie such reduction in fitness might be considered ‘speciation genes’, which are important in driving the nascent species to become independent genetic entities (Wu and Ting 2004). Therefore, we can analyze the genetic basis of speciation as a more tractable problem by focusing on the genetic basis for reproductive isolation. Recent work on reproductive isolation in Drosophila has advanced our understanding of many fundamental questions about speciation (see review in Coyne and Orr 2004). The BSC can be favorably adopted regarding domesticated plants, and the concept of gene pools based on the degree of their sexual affinities is useful for their classification (Harlan 1975). Any good species are by no means completely isolated. Wild and cultivated complexes in crops are taxonomically distinct but phylogenetically conspecific. Their genetic differentiation is maintained through disruptive selection associated with habitat adaptation, indicating that domestication proceeds at the intra-specific level under human influence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Browning H, Strome S (1996) A sperm-supplied factor required for embryogenesis in C. elegans. Development 122:391–404

    PubMed  CAS  Google Scholar 

  • Cameron DR, Moav R (1957) Inheritance in Nicotiana tabacum XXVII. Pollen killer, an alien genetic locus inducing abortion of microspores not carrying it. Genetics 42:326–335

    PubMed  CAS  Google Scholar 

  • Carson HL (1975) The genetics of speciation at the diploid level. Am Nat 109:83–92

    Article  Google Scholar 

  • Chu YE, Morishima H, Oka HI (1969) Reproductive barriers distributed in cultivated rice species and their wild relatives. Jpn J Genet 44:207–223

    Article  Google Scholar 

  • Comai L, Tyagi AP, Winter K, et al. (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12:1551–1568

    Article  PubMed  CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Dobzhansky T (1970) Genetics of the evolutionary process. Columbia University Press New York

    Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  • Endo TR, Tsunewaki K (1975) Sterility of common wheat with Aegilops triuncialis cytoplasm. J Hered 66:13–18

    Google Scholar 

  • Evans MMS, Kermicle JL (2001) Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize. Theor Appl Genet 103:259–265

    Article  CAS  Google Scholar 

  • Fishman L, Willis JH (2005) A novel meiotic drive locus almost completely distorts segregation in Mimulus (monkeyflower) hybrids. Genetics 169:347–353

    Article  PubMed  CAS  Google Scholar 

  • Frank S (1991) Divergence of meiotic drive-suppression system as an explanation for sex-biased hybrid sterility and inviability. Evolution 45:262–267

    Article  Google Scholar 

  • Fukuoka S, Namai H, Okuno K (1998) RFLP mapping of the genes controlling hybrid breakdown in rice (Oryza sativa L.). Theor Appl Genet 97:446–449

    Article  CAS  Google Scholar 

  • Fukushima Y, Konishi T (1994) Genetic studies on hybrid sterility in barley. Jpn J Genet 69:719–726

    Article  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  PubMed  CAS  Google Scholar 

  • Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New York

    Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450

    Article  PubMed  CAS  Google Scholar 

  • Harlan JR (1975) Crop and man. American Society of Agronomy, Madison, Wisconsin

    Google Scholar 

  • Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N (2001) A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics 159:883–892

    PubMed  CAS  Google Scholar 

  • Hollingshead L (1930) A lethal factor in Crepis effective only in an interspecific hybrid. Genetics 15:114–140

    PubMed  CAS  Google Scholar 

  • Hurst GDD, Werren JH (2001) The role of selfish genetic elements in eukaryotic evolution. Nat Rev Genet 2:597–606

    Article  PubMed  CAS  Google Scholar 

  • Hurst LD, Pomiankowski A (1991) Causes of sex ratio bias may account for unisexual sterility in hybrid: a new explanation of Haldane’s rule and related phenomena. Genetics 128:841–858

    PubMed  CAS  Google Scholar 

  • Ikehashi H, Araki H (1986) Genetics of F1 sterility in remote crosses of rice. In: International Rice Research Institute (ed) Rice genetics. IRRI, Los Baños

    Google Scholar 

  • Ji Q, Lu J, Chao Q, Gu M, Xu M (2005) Delimiting a rice wide-compatibility gene S5 n to a 50 kb region. Theor Appl Genet 111:1495–1503

    Article  PubMed  CAS  Google Scholar 

  • Johnston SA, den Nijs TPM, Peloquin SJ, Hanneman RE (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57:5–9

    Google Scholar 

  • Kato S, Kosaka H, Hara S (1928) On the affinity of rice varieties as shown by fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ 3:132–147

    Google Scholar 

  • Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, Fischer RL (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945–1952

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Yoshimura A (2005) Epistasis underlying female sterility detected in hybrid breakdown in a japonica–indica cross on rice (Oryza sativa L.). Theor Appl Genet 110:346–355

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Zho Y (1986) Rice male-sterile cytoplasm and fertility-restoration. In: International Rice Research Institute (ed) Hybrid rice. IRRI, Manila, pp 85–102

    Google Scholar 

  • Li Z, Pinson SRM, Paterson AH, Park WD, Stansel JW (1997) Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population. Genetics 145:1139–1148

    PubMed  CAS  Google Scholar 

  • Lin BY (1984) Ploidy barrier to endosperm development in maize. Genetics 107:103–115

    PubMed  Google Scholar 

  • Loegering WQ, Sears ER (1963) Distorted inheritance of stem-rust resistance of Timstein wheat caused by a pollen-killing gene. Can J Genet 5:65–72

    Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Maguire MP (1963) High transmission frequency of a Tripsacum chromosome in corn. Genetics 48:1185–1194

    PubMed  CAS  Google Scholar 

  • Masly JP, Jones CD, Noor MAF, Locke J, Orr HA (2006) Gene transposition as a cause of hybrid sterility in Drosophila. Science 313:1448–1450

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Khin-Thidar, Sano Y (2003) A gene block causing cross-incompatibility hidden in wild and cultivated rice. Genetics 165:343–352

    PubMed  CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Morishima H (1969) Phenetic similarity and phylogenetic relationships among strains of Oryza perennis, estimated by methods of numerical taxonomy. Evolution 23:429–443

    Article  Google Scholar 

  • Morishima H, Sano Y, Oka HI (1992) Evolutionary studies in cultivated rice and its wild relatives. Oxford Surv Evol Biol 8:135–184

    Google Scholar 

  • Mulcahy DL (1979) The rise of the angiosperms: a genecological factor. Science 206:20–23

    Article  PubMed  Google Scholar 

  • Nakagahra M (1972) Genetic mechanism on the distorted segregation of marker genes belonging to the eleventh linkage group in cultivated rice. Jpn J Breed 22:232–238

    Google Scholar 

  • Nei M, Maruyama T, Wu CI (1983) Models of evolution of reproductive isolation. Genetics 103:557–579

    PubMed  CAS  Google Scholar 

  • Nishiyama I, Yabuno T (1979) Triple fusion of the primary endosperm nucleus, a cause of interspecific cross-incompatibility in Avena. Euphytica 28:57–65

    Article  Google Scholar 

  • Oka HI (1974) Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics 77:521–534

    PubMed  Google Scholar 

  • Oka HI (1988) Origin of cultivated rice. Elsevier, Tokyo

    Google Scholar 

  • Qiu SQ, Liu K, Jiang JX, et al. (2005) Delimitation of the rice wide compatibility gene S5 n to a 40-kb DNA fragment. Theor Appl Genet 111:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Ramsey J, Bradshaw HD, Schemske DW (2003) Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Scrophulariaceae). Evolution 57:1520–1534

    PubMed  Google Scholar 

  • Ren ZL, Lelley T (1990) Chromosomal localization of genes in the R genome causing hybrid necrosis in rye and triticale. Genome 33:40–43

    CAS  Google Scholar 

  • Rick CM (1966) Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics 53:85–96

    PubMed  CAS  Google Scholar 

  • Rick CM (1971) The tomato Ge locus: linkage relations and geographic distribution of alleles. Genetics 67:75–85

    PubMed  Google Scholar 

  • Sandler L, Novitski E (1957) Meiotic drive as an evolutionary force. Am Nat 91:105–110

    Article  Google Scholar 

  • Sano Y (1983) A new gene controlling sterility in F1 hybrids of two cultivated rice species. J Hered 74:435–439

    Google Scholar 

  • Sano Y, Chu YE, Oka HI (1979) Genetic studies of speciation in cultivated rice, I. Genic analysis for the F1 sterility between O. sativa L. and O. glaberrima Steud. Jpn J Genet 54:121–132

    Article  Google Scholar 

  • Scoles GJ, Kibirge-Sebunya IN (1983) Preferential abortion of gametes in wheat induced by an Agropyron chromosome. Can J Cytol 25:1–6

    Google Scholar 

  • Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effect on seed development in Arabidopsis thalina. Development 125:3329–3341

    PubMed  CAS  Google Scholar 

  • Shinjo C (1984) Cytoplasmic male sterility and fertility restoration in rice having genome A. In: Tsunoda S, Takahashi N (eds) Biology of rice. Elsevier, Amsterdam, pp 321–338

    Google Scholar 

  • Snape JW, Bennett MD, Simpson E (1980) Post-pollination events in crosses of hexaploid wheat with tetraploid Hordeum bulbosum. Z Pflanzenzüchtg 85:200–204

    Google Scholar 

  • Stephens SG (1946) The genetics of “corky” I. The New World alleles and their possible role as an interspecific isolating mechanism. J Genet 47:150–161

    Article  Google Scholar 

  • Sweigart AL, Fishman L, Willis JH (2006) A simple genetic incompatibility causes hybrid male sterility in Mimulus. Genetics 172:2465–2479

    Article  PubMed  CAS  Google Scholar 

  • Taketa S, Choda M, Ohashi R, Ichii M, Takeda K (2002) Molecular and physical mapping of a barley gene on chromosome arm 1HL that causes sterility in hybrids with wheat. Genome 45:617–625

    Article  PubMed  CAS  Google Scholar 

  • Taylor DR, Ingvarsson PK (2003) Common features of segregation distortion in plants and animals. Genetica 117:27–35

    Article  PubMed  CAS  Google Scholar 

  • Tezuka T, Marubashi W (2006) Hybrid lethality in interspecific hybrids between Nicotiana tabacum and N. suaveolens: evidence that the Q chromosome causes hybrid lethality based on Q-chromosome-specific DNA markers. Theor Appl Genet 112:1172–1178

    Article  PubMed  CAS  Google Scholar 

  • Tomar SMS, Singh B (1998) Hybrid chlorosis in wheat × rye crosses. Euphytica 99:1–4

    Article  Google Scholar 

  • Tsujimoto H, Tsunewaki K (1985) Gametocidal genes in wheat and its relatives. II. Suppressor of chromosome 3C gametocidal gene of Aegilops triuncialis. Can J Genet Cytol 27:178–185

    Google Scholar 

  • Tsunewaki K (1960) Monosomic and conventional gene analysis in common wheat. III. Lethality. Jpn J Genet 35:71–75

    Article  Google Scholar 

  • Tsunewaki K (1966) Gene analysis on chlorosis of the hybrid, Triticum aestivum var. Chinese Spring × T. macha var. Subletschchumicum, and its bearing on the genetic basis of necrosis and chrolosis. Jpn J Genet 41:413–426

    Article  Google Scholar 

  • Tsunewaki K (1992) Aneuploid analysis of hybrid necrosis and hybrid chlorosis in tetraploid wheats using the D genome chromosome substitution lines of durum wheat. Genome 35:594–601

    Google Scholar 

  • Virmani SS, Shinjo C (1988) Current status of analysis and symbols for male-sterile cytoplasms and fertility-restoring genes. Rice Genet Newsl 5:9–15

    Google Scholar 

  • Walbot V, Evans MS (2003) Unique features of the plant life cycle and their consequences. Nat Rev Genet 4:369–379

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Zhu C, Zhai H, Wan J (2005) Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.). Genet Res 86:97–106

    Article  PubMed  CAS  Google Scholar 

  • Wang GW, He YQ, Xu CG, Zhang Q (2006) Fine mapping of f5-Du, a gene conferring wide-compatibility for pollen fertility in inter-subspecific hybrids of rice (Oryza sativa L.). Theor Appl Genet 112:382–387

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Liu KD, Xu CG, Li XH, Zhang Q (1998) The high level of wide-compatibility of variety ‘Dular’ has a complex genetic basis. Theor Appl Genet 97:407–412

    Article  CAS  Google Scholar 

  • Wu CI (2001) The genic view of the process of speciation. J Evol Biol 14:851–864

    Article  Google Scholar 

  • Wu CI, Ting CT (2004) Genes and speciation. Nat Rev Genet 5:247–257

    Article  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

  • Yi B, Chen Y, Lei S, Tu J, Fu T (2006) Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet 113:643–650

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Jiang L, Wang C, Zhai H, Li D, Wan J (2005) The origin of weedy rice Ludao in China deduced by genome wide analysis of its hybrid sterility genes. Breed Sci 55:409–414

    Article  CAS  Google Scholar 

  • Zhu SS, Wang CM, Zheng TQ, Zhao ZG, Wan JM, Ikehashi H (2004) A novel gene causing hybrid sterility in a remote cross of rice (Oryza sativa L.). Rice Genet Newsl 21:44–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koide, Y., Onishi, K., Kanazawa, A., Sano, Y. (2008). Genetics of Speciation in Rice. In: Hirano, HY., Sano, Y., Hirai, A., Sasaki, T. (eds) Rice Biology in the Genomics Era. Biotechnology in Agriculture and Forestry, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74250-0_19

Download citation

Publish with us

Policies and ethics