Skip to main content

Photoperiodic Flowering in Rice

  • Chapter
Rice Biology in the Genomics Era

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 62))

Rice (Oryza saliva L.) is a staple food for humans, especially in Asian countries, and it feeds about half of the world’s population. During domestication and recent breeding programs, flowering-time responses have diversified in rice due to adaptation to cultivation styles in local areas. For instance, early-flowering and photoperiod-insensitive cultivars have been developed for cultivation in northern Japan. In contrast, to prolong vegetative phases and increase yields, late-flowering cultivars with weak photoperiod sensitivity are preferred in some tropical areas, such as Taiwan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe M, Kobayashi Y, Yamamoto S, et al. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  PubMed  CAS  Google Scholar 

  • BĂĽnning E (1960) Circadian rhythms and the time measurement in photoperiodism. Cold Spring Harbor Symp Quant Biol 25:249–256

    Google Scholar 

  • Casal JJ, Luccioni LG, Oliverino KA, Boccalandro HE (2003) Light, phytochrome signalling and photomorphogenesis in Arabidopsis. Photochem Photobiol Sci 2:625–636

    Article  PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, et al. (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 10.1126/science.1141752

    Google Scholar 

  • Daniel X, Sugano S, Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci USA 101:3292–3297

    Article  PubMed  CAS  Google Scholar 

  • Doi K, Izawa T, Fuse T, et al. (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA, Larner VS, Whitelam GC (2005) The signal transducing photoreceptors of plants. Int J Dev Biol 49:653–664

    Article  PubMed  CAS  Google Scholar 

  • Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agr Res 18:553–606

    Google Scholar 

  • Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Hayama R, Izawa T, Shimamoto K (2002) Isolation of rice genes possibly involved in the photoperiodic control of flowering by a differential display method. Plant Cell Physiol 43:494–504

    Article  PubMed  CAS  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control of pathways produces short-day flowering in rice. Nature 422:719–722

    Article  PubMed  CAS  Google Scholar 

  • Heyl A, SchmĂĽlling T (2003) Cytokinin signal perception and transduction. Curr Opin Plant Biol 6:480–488

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426:302–306

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa R, Tamaki S, Yokoi S, et al. (2005) Suppression of the floral activator Hd3a is the principle cause of the night break effect in rice. Plant Cell 17:3326–3336

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22:391–399

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochromes mediate the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16:2003–2020

    Article  Google Scholar 

  • Izawa T, Takahashi Y, Yano M (2003) Comparative biology has come to bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113–120

    Article  PubMed  CAS  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, et al. (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, et al. (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim J, Han JJ, Han JM, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38:754–764

    Article  PubMed  CAS  Google Scholar 

  • Lumsden PJ, Furuya M (1986) Evidence for two actions of light in the photoperiodic induction of flowering in Pharbitis nil. Plant Cell Physiol 27:1541–1551

    Google Scholar 

  • Mizuno T, Nakamichi N (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol 46:677–685

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T (2003) The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol 44:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Matsushika A, Ashikari M, Yamashino T, Mizuno T (2005) Circadian-associated rice pseudo response regulators (OsPRRs): insight into the control of flowering-time. Biosci Biotechnol Biochem 69:410–414

    Article  PubMed  CAS  Google Scholar 

  • Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335–348

    Article  PubMed  CAS  Google Scholar 

  • Muszynski MG, Dam T, Li B, et al. (2006) delayed flowering 1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol DOI:10.1104/pp. 106.088815

    Google Scholar 

  • Pittendrigh CS, Minis DH (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am Nat 108:261–293

    Article  Google Scholar 

  • Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama N, Izawa T, Oikawa T, Shimamoto K (2001) Light regulation of circadian clock-controlled gene expression in rice. Plant J 26:607–615

    Article  PubMed  CAS  Google Scholar 

  • Sung S, Amasino RM (2005) Remembering winter: toward a molecular understanding of vernalization. Annu Rev Plant Biol. 56:491–508

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Inagaki N, Xie X, et al. (2005) Distinct and cooperative functions of phytochromes. A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311–3325

    Article  PubMed  CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong H-L, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 10.1126/science.1141753

    Google Scholar 

  • Thomas B (1998) Photoperiodism: an overview. In: Lumsden, PJ, Millar, AJ (eds) Biological rhythms and photoperiodism in plants. Bios Scientific Publishers, Oxford, pp 151–181

    Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants. Academic Press, London

    Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, et al. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Yano M (2001) Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol 4:130–135

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95:1025–1032

    Article  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, et al. (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  PubMed  CAS  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    Article  PubMed  CAS  Google Scholar 

  • Yokoo M, Okuno K (1993) Genetic analysis of earliness mutations induced in the rice cultivar Norin 8. Jpn J Breed 43:1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Izawa, T. (2008). Photoperiodic Flowering in Rice. In: Hirano, HY., Sano, Y., Hirai, A., Sasaki, T. (eds) Rice Biology in the Genomics Era. Biotechnology in Agriculture and Forestry, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74250-0_13

Download citation

Publish with us

Policies and ethics