Skip to main content

Genetic Control of Embryogenesis in Rice

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 62))

The fundamental body organization in higher plants is established during embryogenesis, although most morphogenetic events occur after embryogenesis (Jürgens et al. 1994; Meinke 1995). Like all of the sexually reproducing organisms, vascular plants begin their existence as a single cell, the fertilized egg or zygote. This cell proliferates to become an embryo with differentiating organs and tissues. During the early stages of embryogenesis, several body axes, which form the basis for apical-basal and radial patterns, are formed. In monocotyledonous plants such as rice, the shape of the embryo is not radially symmetrical (Fig. 1). This leads to the existence of the third axis, the dorsiventral axis. In the embryo, the region where the shoot develops is defined as the ventral side, while the opposite side then becomes the dorsal side. The shoot apical meristem (SAM) is a center of morphogenesis in plants, as it produces most of the above-ground parts, including the leaves, stems, and axillary buds; the other type of meristematic tissue, the root apical meristem (RAM), generates the below-ground parts (Steeves and Sussex 1989). The SAM and RAM are first formed during early embryogenesis at fixed positions based on positional information defined by the three polarized axes, which determine the basic body organization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126:1563–1570

    PubMed  CAS  Google Scholar 

  • Aida M, Beis D, Heidstra R, et al. (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109

    Article  PubMed  CAS  Google Scholar 

  • Asai K, Satoh N, Sasaki H, Satoh H, Nagato Y (2002) A rice heterochronic mutant, mori1, is defective in the juvenile–adult phase change. Development 129:265–273

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Eshed Y, Baum SF (2002) Establishment of polarity in angiosperm lateral organs. Trends Genet 18:134–141

    Article  PubMed  CAS  Google Scholar 

  • Clark JK, Sheridan WF (1991) Isolation and characterization of 51 embryo-specific mutations of maize. Plant Cell 3:935–951

    Article  PubMed  Google Scholar 

  • Clark SE, Jacobsen SE, Levin JZ, Meyerowitz EM (1996) The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122:1567–1575

    PubMed  CAS  Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520

    Article  PubMed  CAS  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, et al. (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10:967–979

    Article  PubMed  CAS  Google Scholar 

  • Freeling M (1992) A conceptual framework for maize leaf development. Dev Biol 153:44–58

    Article  PubMed  CAS  Google Scholar 

  • Grigg SP, Canales C, Hay A, Tsiantis M (2005) SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 437:1022–1026

    Article  PubMed  CAS  Google Scholar 

  • Hong SK, Aoki T, Kitano H, Satoh H, Nagato Y (1995) Phenotypic diversity of 188 rice embryo mutants. Dev Genet 16:298–310

    Article  Google Scholar 

  • Hunter C, Poethig RS (2003) miSSING LINKS: miRNAs and plant development. Curr Opin Genet Dev 13:372–378

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Sentoku N, Nishimura A, Hong SK, Sato Y, Matsuoka M (2002) Position dependent expression of GL2-type homeobox gene, Roc1: significance for protoderm differentiation and radial pattern formation in early rice embryogenesis. Plant J 29:497–507

    Article  PubMed  CAS  Google Scholar 

  • Itoh JI, Kitano H, Matsuoka M, Nagato Y (2000) SHOOT ORGANIZATION genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. Plant Cell 12:2161–2174

    Article  PubMed  CAS  Google Scholar 

  • Itoh JI, Nonomura KI, Ikeda K, et al. (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Jacobsen SE, Running MP, Meyerowitz EM (1999) Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126:5231–5243

    PubMed  CAS  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  PubMed  CAS  Google Scholar 

  • Jürgens G, Torres-Ruiz RA, Berleth T (1994) Embryonic pattern formation in flowering plants. Annu Rev Genet 28:351–371

    Article  PubMed  Google Scholar 

  • Kamiya N, Nagasaki H, Morikami A, Sato Y, Matsuoka M (2003a) Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J 35:429–441

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N, Nishimura A, Sentoku N, et al. (2003b) Rice globular embryo 4 (gle4) mutant is defective in radial pattern formation during embryogenesis. Plant J 44:875–883

    CAS  Google Scholar 

  • Kidner CA, Martienssen RA (2004) Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428:81–84

    Article  PubMed  CAS  Google Scholar 

  • Kidner CA, Martienssen RA (2005a) The developmental role of microRNA in plants. Curr Opin Plant Biol 8:38–44

    Article  PubMed  CAS  Google Scholar 

  • Kidner CA, Martienssen RA (2005b) The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Dev Biol 280:504–517

    Article  PubMed  CAS  Google Scholar 

  • Li H, Xu L, Wang H, et al. (2005) The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development. Plant Cell 17:2157–2171

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka M, Ichikawa H, Saito A, Tada Y, Fujimura T, Kano-Murakami Y (1993) Expression of a rice homeobox gene cause altered morphology of transgenic plants. Plant Cell 5:1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  PubMed  CAS  Google Scholar 

  • Mayer U, Torres-Ruis R, Berleth T, Misera S, Jürgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353:402–407

    Article  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  PubMed  CAS  Google Scholar 

  • Meinke DW (1995) Molecular genetics of plant embryogenesis. Annu Rev Plant Phys Plant Mol Biol 46:369–394

    Article  CAS  Google Scholar 

  • Miyoshi K, Nakata E, Nagato Y, Hattori T (1999) Differential in situ expression of three ABA-regulated genes of rice, RAB16A, REG2 and OSBZ8, during seed development. Plant Cell Physiol 40:443–447

    CAS  Google Scholar 

  • Nagasaki H, Itoh JI, Hayashi K, et al. (2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci (in press)

    Google Scholar 

  • Patton DA, Franzmann LH, Meinke DW (1991) Mapping genes essential for embryo development in Arabidopsis thaliana. Mol Gen Genet 227:337–347

    Article  PubMed  CAS  Google Scholar 

  • Pilu R, Consonni G, Busti E, et al. (2002) Mutations in two independent genes lead to suppression of the shoot apical meristem in maize. Plant Physiol 128:502–511

    Article  PubMed  CAS  Google Scholar 

  • Plasterk RH (2006) Micro RNAs in animal development. Cell 124:877–881

    Article  PubMed  CAS  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76

    Article  PubMed  CAS  Google Scholar 

  • Reiser L, Sánchez-Baracaldo P, Hake S (2000) Knots in the family tree: evolutionary relationships and functions of knox homeobox genes. Plant Mol Biol 42:151–166

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Hong SK, Tagiri A, et al. (1996) A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. Proc Natl Acad Sci USA 93:8117–8122

    Article  PubMed  CAS  Google Scholar 

  • Satoh N, Hong SK, Nishimura A, Matsuoka M, Kitano H, Nagato Y (1999) Initiation of shoot apical meristem in rice: characterization of four SHOOTLESS genes. Development 126:3629–3636

    PubMed  CAS  Google Scholar 

  • Satoh N, Itoh J, Nagato Y (2003) The SHOOTLESS2 and SHOOTLESS1 genes are involved in both initiation and maintenance of the shoot apical meristem through regulating the number of indeterminate cells. Genetics 164:335–346

    PubMed  CAS  Google Scholar 

  • Schauer SE, Jacobsen SE, Meinke DW, Ray A (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7:487–491

    Article  PubMed  CAS  Google Scholar 

  • Sentoku N, Sato Y, Kurata N, Ito Y, Kitano H, Matsuoka M (1999) Regional expression of the rice KN1-type homeobox gene family during embryo, shoot, and flower development. Plant Cell 11:1651–1664

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Jackson D, Hake S (1995) Expression of knotted1 marks shoot meristem formation during maize embryogenesis. Dev Genet 16:344–348

    Article  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  PubMed  CAS  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge, Massachusetts

    Google Scholar 

  • Sugimoto N, Takeda G, Nagato Y, Yamaguchi J (1998) Temporal and spatial expression of the α-amylase gene during seed germination in rice and barley. Plant Cell Physiol 39:323–333

    CAS  Google Scholar 

  • Takada S, Tasaka M (2002) Embryonic shoot apical meristem formation in higher plants. J Plant Res 115:411–417

    Article  PubMed  CAS  Google Scholar 

  • Willemsen V, Scheres B (2004) Mechanisms of pattern formation in plant embryogenesis. Annu Rev Genet 38:587–614

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Yang L, Pi L, et al. (2006) Genetic interaction between the AS1–AS2 and RDR6–SGS3–AGO7 pathways for leaf morphogenesis. Plant Cell Physiol 47:853–863

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ye ZH (2004) amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol 45:369–385

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sato, Y. (2008). Genetic Control of Embryogenesis in Rice. In: Hirano, HY., Sano, Y., Hirai, A., Sasaki, T. (eds) Rice Biology in the Genomics Era. Biotechnology in Agriculture and Forestry, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74250-0_12

Download citation

Publish with us

Policies and ethics