Skip to main content

Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs

  • Conference paper
Book cover Fundamentals of Computation Theory (FCT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4639))

Included in the following conference series:

Abstract

Motivated from recent applications in community TV networks and VLSI circuit design, we study variants of the classic bin packing problem, in which a set of items needs to be packed in a minimum number of unit-sized bins, allowing items to be fragmented. This can potentially reduce the total number of bins used, however, item fragmentation does not come for free. In bin packing with size preserving fragmentation (BP-SPF), there is a bound on the total number of fragmented items. In bin packing with size increasing fragmentation (BP-SIF), fragmenting an item increases the input size (due to a header/footer of fixed size that is added to each fragment). Both BP-SPF and BP-SIF do not belong to the class of problems that admit a polynomial time approximation scheme (PTAS).

In this paper, we develop fast asymptotic fully polynomial time approximation schemes (AFPTAS) for both problems. The running times of our schemes are linear in the input size. As special cases, our schemes yield AFPTASs for classical bin packing and for variable-sized bin packing, whose running times improve the best known running times for these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beling, P., Megiddo, N.: Using fast matrix multiplication to find basic solutions. Theoretical Computer Science 205, 307–316 (1993)

    Article  MathSciNet  Google Scholar 

  2. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: a survey. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 46–93. PWS Publishing, Boston (1997)

    Google Scholar 

  3. Eisenbrand, F.: Fast integer programming in fixed dimension. In: Proc. of ESA (2003)

    Google Scholar 

  4. Epstein, L., Levin, A., Robust, A.: A Robust APTAS for the Classical Bin Packing Problem. In: Proc. of ICALP (2006)

    Google Scholar 

  5. Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related and identical parallel machines. In: Proc. of ESA (1999)

    Google Scholar 

  6. de la Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear time. Combinatorica 1, 349–355 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fishkin, A.V., Jansen, K., Sevastianov, S., Sitters, R.: Preemptive Scheduling of Independent Jobs on Identical Parallel Machines Subject to Migration Delay. In: Proc. of ESA (2005)

    Google Scholar 

  8. Friesen, D.K., Langston, M.A.: Variable sized bin packing. SIAM J. on Computing 15, 222–230 (1986)

    Article  MATH  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-completeness. W. H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  10. Grigoriadis, M.D., Khachiyan, L.G., Porkolab, L., Villavicencio, J.: Approximate Max-Min Resource Sharing for Structured Concave Optimization. SIAM J. on Optimization 11(4), 1081–1091 (2000)

    Article  MathSciNet  Google Scholar 

  11. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: Practical and theoretical results. J. of the ACM 34(1), 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  13. Jansen, K., Porkolab, L.: On Preemptive Resource Constrained Scheduling: Polynomial-time Approximation Schemes. In: Proc. of IPCO, pp. 329–349 (2002)

    Google Scholar 

  14. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one dimensional bin packing problem. In: Proc. of FOCS (1982)

    Google Scholar 

  15. Kellerer, H., Pferschy, U.: A New Fully Polynomial Approximation Scheme for the Knapsack Problem. J. of Combinatorial Optimization 3, 59–71 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mandal, C.A., Chakrabarti, P.P, Ghose, S.: Complexity of fragmentable object bin packing and an application. Computers and Mathematics with Applications 35(11), 91–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. McNaughton, R.: Scheduling with deadlines and loss functions. Manage. Sci. 6, 1–12 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  18. Menakerman, N., Rom, R.: Bin Packing Problems with Item Fragmentations. In: Proc. of WADS (2001)

    Google Scholar 

  19. Motwani, R.: Lecture notes on approximation algorithms. Technical report, Dept. of Computer Science, Stanford Univ., CA (1992)

    Google Scholar 

  20. Multimedia Cable Network System Ltd., Data-Over-Cable Service Interface Specification (2000), http://www.cablelabs.com

  21. Murgolo, F.D.: An Efficient Approximation Scheme for Variable-Sized Bin Packing. SIAM J. Comput. 16(1), 149–161 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  22. Naaman, N., Rom, R.: Packet Scheduling with Fragmentation. In: Proc. of INFOCOM 2002, pp. 824–831 (2002)

    Google Scholar 

  23. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast Approximation Algorithms for Fractional Packing and Covering Problems. In: Proc. of FOCS (1995)

    Google Scholar 

  24. Shachnai, H., Tamir, T., Woeginger, G.J.: Minimizing Makespan and Preemption Costs on a System of Uniform Machines. Algorithmica 42, 309–334 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shachnai, H., Tamir, T., Yehezkely, O.: Approximation Schemes for Packing with Item Fragmentation. Theory of Computing Systems (to appear)

    Google Scholar 

  26. Shachnai, H., Yehezkely, O.: Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs. full version. http://www.cs.technion.ac.il/~hadas/PUB/frag_afptas.pdf

  27. Vazirani, V.V.: Bin Packing. In: Approximation Algorithms, pp. 74–78. Springer, Heidelberg (2001)

    Google Scholar 

  28. Young, N.E.: Sequential and Parallel Algorithms for Mixed Packing and Covering. In: Proc. of FOCS, pp. 538–546 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erzsébet Csuhaj-Varjú Zoltán Ésik

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shachnai, H., Yehezkely, O. (2007). Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs. In: Csuhaj-Varjú, E., Ésik, Z. (eds) Fundamentals of Computation Theory. FCT 2007. Lecture Notes in Computer Science, vol 4639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74240-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74240-1_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74239-5

  • Online ISBN: 978-3-540-74240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics