Skip to main content

Numerical Simulation of Shape Memory Actuators in Mechatronics

  • Chapter
From Nano to Space
  • 1146 Accesses

Abstract

This paper deals with shape memory alloys (SMA) as temperature controlled actuators in mechatronic applications. The mathematical model consists of a coupled system of partial differential and differential-algebraic equations where continuum equations describe the evolution of deformation and temperature while rigid body equations and control laws define the interaction with the mechatronic device. Both modeling and numerical issues will be addressed. In particular, by applying the method of lines with finite elements, the overall problem is reduced to a differential-algebraic system in time that is shown to be of index two. Simulation results for a robotics application illustrate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Arndt, M. Griebel, and T. Roubiček. Modelling and numerical simulation of martensitic transformation in shape memory alloys. Continuum Mechanics and Thermodynamics, 15(5):463–485, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Carstensen and P. Plechac. Numerical analysis of compatible phase transitions in elastic solids. SIAM J. Num. Anal., 37(6):2061–2081, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Hackbusch. Theorie und Numerik elliptischer Differentialgleichungen. Teubner Studienbücher, Stuttgart, 1986.

    MATH  Google Scholar 

  4. D. Helm. Formgedächtnislegierungen: Experimentelle Untersuchung, phänomenologische Modellierung und numerische Simulation der thermomechanischen Materialeigenschaften. PhD thesis, Universität Gesamthochschule Kassel, 2001.

    Google Scholar 

  5. D. Helm and P. Haupt. Shape memory behaviour: modelling within continuum thermomechanics. Intern. J. of Solids and Structures, 40:827–849, 2003.

    Article  MATH  Google Scholar 

  6. Y. Jung, P. Papadopoulos, and R.O. Ritchie. Constitutive modelling and numerical simulation of multivariant phase transformation in superelastic shapememory alloys. Int. J. Numer. Meth. Engng, 60:429–460, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Mielke and T. Roubiček. A rate-independent model for inelastic behavior of shape-memory alloys. MULTISCALE MODEL. SIMUL., 1(4):571–597.

    Google Scholar 

  8. O. Scherf and B. Simeon. Differential-algebraic equations in elasto-viscoplasticity. In K. Hutter and H. Baaser, editors, Deformation and Failure in Metallic Materials, volume 10 of LN in Mechanics, pages 31–50. Springer, 2003.

    Google Scholar 

  9. T. Schicketanz, A. Voung, G. Teichelmann, and B. Simeon. Simulation eines Roboterfingers mit SMA Antrieb. http://wwwm2.ma.tum.de/~teichel/projekte/teichelmann/Finger.avi, 2006.

  10. M. Schleich. Formgedächtnismaterialien als Fingerantrieb. PhD thesis, Technische Universität München, 2003.

    Google Scholar 

  11. M. Schleich and F. Pfeiffer. Modelling of shape memory alloys and experimental verification. PAMM, 2(1):294–295, 2003.

    Article  Google Scholar 

  12. L. F. Shampine and M. W. Reichelt. The matlab ode suite. SIAM Journal on Scientific Computing, 18:1–22, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.C. Simo and T.J.R. Hughes. Computational Inelasticity. Springer, 1998.

    Google Scholar 

  14. E. Zeidler. Nonlinear Functional Analysis and its Applications II/A. Springer-Verlag, 1990.

    Google Scholar 

  15. T.I. Zohdi and P. Wriggers. Introduction to computational micromechanics. volume 20 of LN in Appl. and Comp. Mech. Springer-Verlag, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Teichelmann, G., Simeon, B. (2008). Numerical Simulation of Shape Memory Actuators in Mechatronics. In: Breitner, M.H., Denk, G., Rentrop, P. (eds) From Nano to Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74238-8_15

Download citation

Publish with us

Policies and ethics