Skip to main content

Walking, Running and Kicking of Humanoid Robots and Humans

  • Chapter
From Nano to Space
  • 1205 Accesses

Abstract

In this paper key aspects and several methods for modeling, simulation, optimization and control of the locomotion of humanoid robots and humans are discussed. Similarities and differences between walking and running of humanoid robots and humans are outlined. They represent several, different steps towards the ultimate goals of understanding and predicting human motion by validated simulation models and of developing humanoid robots with human like performance in walking and running. Numerical and experimental results are presented for model-based optimal control as well as for hardware-in-the-loop optimization of humanoid robot walking and for forward dynamics simulation and optimization of a human kicking motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Abramson. Pattern Search Filter Algorithms for Mixed Variable General Constrained Optimization Problems. PhD thesis, Rice University, 2002.

    Google Scholar 

  2. F.C. Anderson and M.G. Pandy. A dynamic optimization solution for vertical jumping in three dimensions. Comp. Meth. Biomech. Biomed. Eng., 2:201–231, 1999.

    Article  Google Scholar 

  3. M. Buss, M. Hardt, J. Kiener, M. Sobotka, M. Stelzer, O. von Stryk, and D. Wollherr. Towards an autonomous, humanoid, and dynamically walking robot: modeling, optimal trajectory planning, hardware architecture, and experiments. In Proc. IEEE Intl. Conf. on Humanoid Robots, page to appear, Karlsruhe, München, Sept. 30–Oct. 3 2003. Springer Verlag.

    Google Scholar 

  4. R. Bulirsch and D. Kraft, editors. Computational Optimal Control, volume 115 of Intl. Series in Numer. Math. Birkhäuser, 1994.

    Google Scholar 

  5. J.J. Craig. Introduction to Robotics. Pearson Education, 3rd edition, 2005.

    Google Scholar 

  6. S. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient bipedal robots based on passive dynamic walkers. Science Magazine, 307:1082–1085, 2005.

    Google Scholar 

  7. R. Featherstone. Robot Dynamics Algorithms. Kluwer Academic Publishers, 1987.

    Google Scholar 

  8. M. Friedmann, J. Kiener, S. Petters, H. Sakamoto, D. Thomas, and O. von Stryk. Versatile, high-quality motions and behavior control of humanoid soccer robots. In Proc. Workshop on Humanoid Soccer Robots of the 2006 IEEE-RAS Intl. Conf. on Humanoid Robots, pages 9–16, Genoa, Italy, Dec. 4–6 2006.

    Google Scholar 

  9. H. Geyer. Simple Models of Legged Locomotion based on Compliant Limb Behavior. PhD thesis, Friedrich-Schiller-University Jena, 2005.

    Google Scholar 

  10. P. Gilmore and C.T. Kelley. An implicit filtering algorithm for optimization of functions with many local minima. SIAM J. Optim., 5:269–285, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  11. P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim., 12:979–1006, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Goswami. Foot rotation indicator (FRI) point: A new gait planning tool to evaluate postural stability of biped robots. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 47–52, 1999.

    Google Scholar 

  13. H. Geyer, A. Seyfarth, and R. Blickhan. Compliant leg behaviour explains basic dynamics of walking and running. Proc. Roy. Soc. Lond. B, 273(1603):2861–2867, 2006.

    Article  Google Scholar 

  14. M. Hirose, Y. Haikawa, T. Takenaka, and K. Hirai. Development of humanoid robot ASIMO. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, Workshop 2, Maui, HI, USA, 29 Oct 2001.

    Google Scholar 

  15. Th. Hemker, H. Sakamoto, M. Stelzer, and O. von Stryk. Hardware-in-the-loop optimization of the walking speed of a humanoid robot. In 9th Intl. Conf. on Climbing and Walking Robots (CLAWAR), pages 614–623, Brussels, Belgium, September 11–14 2006.

    Google Scholar 

  16. R. Höpler, M. Stelzer, and O. von Stryk. Object-oriented dynamics modeling for legged robot trajectory optimization and control. In Proc. IEEE Intl. Conf. on Mechatronics and Robotics (MechRob), pages 972–977, Aachen, Sept. 13–15 2004. Sascha Eysoldt Verlag.

    Google Scholar 

  17. R. Höpler, M. Stelzer, and O. von Stryk. Object-oriented dynamics modeling of walking robots for model-based trajectory optimization and control. In I. Troch and F. Breitenecker, editors, Proc. 5th MATHMOD Vienna, number 30 in ARGESIM Reports, Feb. 8–10 2006.

    Google Scholar 

  18. M. Hardt and O. von Stryk. Dynamic modeling in the simulation, optimization and control of legged robots. ZAMM: Z. Angew. Math. Mech. (Appl. Math. Mech.), 83(10):648–662, 2003.

    Article  MATH  Google Scholar 

  19. F. Iida, Y. Minekawa, J. Rummel, and A. Seyfarth. Toward a human-like biped robot with compliant legs. Intelligent Autonomous Systems, 9:820–827, 2006.

    Google Scholar 

  20. K. Kaneko, F Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, and T. Isozumi. Humanoid robot HRP-2. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 1083–1090, New Orleans, LA, USA, Apr. 26 Apr–May 1 2004.

    Google Scholar 

  21. J. Y. Kim, I. W. Park, J. Lee, M. S. Kim, B. K. Cho, and J. H. Oh. System design and dynamic walking of humanoid robot KHR-2. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 1443–1448, Barcelona, Spain, 18–22 Apr 2005.

    Google Scholar 

  22. K. Löffler, M. Gienger, and F. Pfeiffer. Sensor and control design of a dynamically stable biped robot. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 484–490, Taipei, Taiwan, Sep. 14–19 2003.

    Google Scholar 

  23. B.M. Nigg and W. Herzog. Biomechanics of the Musculo-skeletal System. Wiley, 1999.

    Google Scholar 

  24. K. Nishiwaki, M. Kuga, S. Kagami, M. Inaba, and Hirochika Inoue. Wholebody cooperative balanced motion generation for reaching. In IEEE/RAS Intl. Conf. on Humanoid Robots, pages 672–689, Los Angeles, USA, Nov. 10–12 2004.

    Google Scholar 

  25. K. Nagasaka, Y. Kuroki, S. Suzuki, Y. Itoh, and J. Yamaguchi. Integrated motion control for walking, jumping and running on a small bipedal entertainment robot. In IEEE Intl. Conf. on Robotics and Automation (ICRA), volume 4, pages 3189–3194, New Orleans, LA, USA, Apr. 26–May 1 2004.

    Google Scholar 

  26. M.G. Pandy. Computer modeling and simulation of human movement. Annu. Rev. Biomed. Eng., 3:245–273, 2001.

    Article  Google Scholar 

  27. M.H. Raibert. Legged Robots That Balance. MIT Press, 1986.

    Google Scholar 

  28. J. Rasmussen, M. Damsgaard, and M. Voigt. Muscle recruitment by the min/max criterion? A comparative numerical study. J. Biomechanics, 34(3):409–415, 2001.

    Article  Google Scholar 

  29. G. Rodriguez, K. Kreutz-Delgado, and A. Jain. A spatial operator algebra for manipulator modeling and control. Intl. J. Robotics Research, 40:21–50, 1991.

    Google Scholar 

  30. RoboCup. The RoboCup federation. http://www.robocup.org.

  31. T. Spägele, A. Kistner, and A. Gollhofer. Modelling, simulation and optimisation of a human vertical jump. J. Biomechanics, 32(5):521–530, 1999.

    Article  Google Scholar 

  32. T. Sugihara, Y. Nakamura, and H. Inoue. Realtime humanoid motion generation through ZMP manipulation based on inverted pendulum control. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 1404–1409, May 2002.

    Google Scholar 

  33. T. Spägele. Modellierung, Simulation und Optimierung menschlicher Bewegungen. PhD thesis, Universität Stuttgart, 1998.

    Google Scholar 

  34. T. Spägele. personal communication. 2005.

    Google Scholar 

  35. J. Sacks, S. B. Schiller, and W.J. Welch. Design for computer experiments. Technometrics, 31:41–47, 1989.

    Article  MathSciNet  Google Scholar 

  36. A. Seyfarth, R. Tausch, M. Stelzer, F. Iida, A. Karguth, and O. von Stryk. Towards bipedal running as a natural result of optimizing walking speed for passively compliant three-segmented legs. In 9th Intl. Conf. on Climbing and Walking Robots (CLAWAR), pages 396–401, Brussels, Belgium, September 12–14 2006.

    Google Scholar 

  37. M. Stelzer and O. von Stryk. Efficient forward dynamics simulation and optimization of human body dynamics. ZAMM: Z. Angew. Math. Mech. (Appl. Math. Mech.), 86(10):828–840, 2006.

    Article  MATH  Google Scholar 

  38. M. Vukobratovic and B. Borovac. Zero-moment point-thirty five years of its life. Intl. J. Humanoid Robotics, 1(1):157–173, 2004.

    Article  Google Scholar 

  39. O. von Stryk and R. Bulirsch. Direct and indirect methods for trajectory optimization. Annals of Operations Research, 37:357–373, 1992.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stelzer, M., von Stryk, O. (2008). Walking, Running and Kicking of Humanoid Robots and Humans. In: Breitner, M.H., Denk, G., Rentrop, P. (eds) From Nano to Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74238-8_14

Download citation

Publish with us

Policies and ethics