Skip to main content

Microbial Communities and Processes in Arctic Permafrost Environments

  • Chapter
Microbiology of Extreme Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 13))

The Arctic plays a key role in Earth's climate system, as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. Global warming will have important implications for the functional diversity of microbial communities in these systems. It is likely that temperature increases at high latitudes will stimulate microbial activity and carbon decomposition in Arctic environments and accelerate climate change by increasing trace gas release (Melillo et al. 2002, Zimov et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alawi M, Lipski A, Sanders T, Pfeiffer E-M, Spieck E (2007) Cultivation of a novel cold-adapted nitrite oxidizing Betaproteobacterium from the Siberian Arctic. ISME J 1:256–264.

    Article  PubMed  CAS  Google Scholar 

  • Ananyan AA (1970) Unfrozen water content in frozen clay at a temperature from −0.6°C to −40°C – −60°C. Merzlotnye Issledovaniya 10:267–270 (in Russian).

    Google Scholar 

  • Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5: 321–326.

    Article  PubMed  Google Scholar 

  • Bartosch S, Hartwig C, Spieck E, Bock E (2002) Immunological detection of Nitrospira-like bacteria in various soils. Microbiol Ecol 43:26–33.

    Article  CAS  Google Scholar 

  • Bock E, Wagner M (2006) Oxidation of inorganic nitrogen compounds as an energy source. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.) Prokaryotes, vol 2, Springer, New York, pp 457–495.

    Chapter  Google Scholar 

  • Bockheim JG, Everett LR, Hinkel KM, Nelson FE, Brown J (1999) Soil organic storage and distribution in Arctic Tundra, Barrow, Alaska. Soil Sci Soc Am J 63:934–940.

    Article  CAS  Google Scholar 

  • Boyd WL (1958) Microbiological studies of arctic soils. Ecol 39:332–336.

    Article  Google Scholar 

  • Boyd WL and Boyd JW (1964) The presence of bacteria in permafrost of the Alaskan arctic. Can J Microbiol 10:917–919.

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotech 13:253–261.

    Article  PubMed  CAS  Google Scholar 

  • Colwell FS, Delwiche ME, Blackwelder D, Wilson MS, Lehman RM, Uchida T (1999) Microbial communities from core intervals, JAPEX/JNOC/GSC Mallik 5L–38 gas hydrate research well. In: Scientific Results from Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Dallimore SR, Uchida T, Collett TS (eds), Bulletin 544. Geological Survey of Canada, Microbiology section, pp. 189–195.

    Google Scholar 

  • Conrad R (2005) Quantification of methanogenic pathways using stable carbonisotopic signatures: A review and a proposal. Organ Geochem 36:739–752.

    Article  CAS  Google Scholar 

  • Deslippe JR, Egger KN, Henry HR (2005) Impact of warming and fertilization on nitrogen-fixing microbial communities in the Canadian High Arctic. FEMS Microbiol Ecol 53:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Drake H, Küsel K, Matthies C (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.) Prokaryotes, vol 2, Springer, New York, pp 354–420.

    Chapter  Google Scholar 

  • Formisano V (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761.

    Article  PubMed  CAS  Google Scholar 

  • French HM (1996) The Periglacial Environment. Longman, London.

    Google Scholar 

  • Ganzert L, Jurgens G, Münster U and Wagner D (2007) Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59:476–488.

    Article  PubMed  CAS  Google Scholar 

  • Garcia JL, Patel BKC and Olliver B (2000) Taxonomic, phylogenetic and ecological diversity of methanogenic archaea. Anaerobe 6:205–226.

    Article  PubMed  CAS  Google Scholar 

  • Gilichinsky DA (2001) Permafrost model of extraterrestrial habitat. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. The Quest for the Conditions of Life, Springer, Berlin, pp. 271–295.

    Google Scholar 

  • Gilichinsky DA, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol 53:117–128.

    Article  PubMed  CAS  Google Scholar 

  • Gilichinsky DA, Wagener S (1994) Microbial life in permafrost. In: Gilichinsky D (ed) Viable Microorganisms in Permafrost, Pushchino Research Center, pp. 7–20.

    Google Scholar 

  • Gilichinsky DA, Wagener S, Vishnivetskaya TA (1995) Permafrost microbiology. Permafrost Periglac Process 6:281–291.

    Article  Google Scholar 

  • Gounot AM (1999) Microbial life in permanently cold soils. In: Margesin R, Schinner F (eds) Cold-Adapted Organisms, Springer, Berlin, pp. 3–16.

    Google Scholar 

  • Grosskopf R, Stubner S, Liesack W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989.

    CAS  Google Scholar 

  • Hales BA, Edwards C, Ritchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675.

    PubMed  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471.

    PubMed  CAS  Google Scholar 

  • Hedderich R, Whitman W (2006) Physiology and biochemistry of the methane-producing archaea. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.) Prokaryotes, vol 2, Springer, New York, pp 1050–1079.

    Chapter  Google Scholar 

  • Høj L, Olsen RA, Torsvik VL (2005) Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78°N) as characterised by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53:89–101.

    Article  PubMed  CAS  Google Scholar 

  • Høj L, Rusten M, Haugen LE, Olsen RA, Torsvik VL (2006) Effects of water regime on archaeal community composition in Arctic soils. Environ. Microbiol 8: 984–996.

    Article  PubMed  Google Scholar 

  • International Permafrost Association Standing Committee on Data Information and Communication (comp.) (2003) Circumpolar Active-Layer Permafrost System, Version 2.0. Edited by M. Parsons and T. Zhang. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology. CD-ROM.

    Google Scholar 

  • Jakosky BM, Nealson KN, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habilitability of Mars’ polar regions. Astrobiology 3:343–350.

    Article  PubMed  CAS  Google Scholar 

  • James N, Sutherland ML (1942) Are there living bacteria in permanently frozen subsoil? Can J Res Sect Bot Sci 20:228–235.

    Google Scholar 

  • Jonasson S, Havstrom M, Jensen M, Callaghan TV (1993) In situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate-change. Oecologia 95: 179–186.

    Article  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed – The role of sulphate reduction. Nature 296:643–645.

    Article  Google Scholar 

  • Kattenberg A, Giorgi F, Grassel H, Meehl GA, Michell JFB, Stoufer RJ, Tokioka T, Weaver AJ, Wigley TML (1996) Climate models – Projections of future climate. In: Houghton JT (ed) Climate Change 1995, University Press, Cambridge, pp 285–357.

    Google Scholar 

  • Khlebnikova GM, Gilichinsky DA, Fedorov-Davydov DC, Vorobyova EA (1990) Quantitative evaluation of microorganisms in permafrost deposits and buried soils. Microbiology 59:106–112.

    Google Scholar 

  • Kobabe S, Wagner D, Pfeiffer EM (2004) Characterization of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridization. FEMS Microbiol Ecol 50:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Kotsyurbenko OR, Nozhevnikova AN, Zavarzin GA (1993) Methanogenic degradation of organic matter by anaerobic bacteria at low temperature. Chemosphere 27:1745–1761.

    Article  CAS  Google Scholar 

  • Kotsyurbenko OR, Simankova MV, Nozhevnikova AN, Zhilina TN, Bolotina NP, Lysenko AM, Osipov GA (1995) New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov. Arch Microbiol 163:29–34.

    Article  CAS  Google Scholar 

  • Kris AE (1940) Microorganisms in permafrost. Microbiology 9:879–886 (in Russian).

    Google Scholar 

  • Liebner S, Wagner D (2007) Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ Microbiol 9:107–117.

    Article  PubMed  CAS  Google Scholar 

  • Lydolph MC, Jacobsen J, Arctander P, Thomas M, Gilbert P, Gilichinsky DA, Hansen AJ, Willerslev E, Lange L (2005) Beringian paleoecology inferred from permafrost-preserved fungal DNA. Appl Environ Microbiol 71:1012–1017.

    Article  PubMed  CAS  Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176.

    Article  PubMed  CAS  Google Scholar 

  • Metje M, Frenzel P (2007) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ Microbiol 9:954–964.

    Article  PubMed  CAS  Google Scholar 

  • Morozova D, Möhlmann D, Wagner D (2007) Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Orig Life Evol Biosph 37:189–200.

    Article  PubMed  CAS  Google Scholar 

  • Morozova D, Wagner D (2007) Stress response of methanogenic archaea from Siberian permafrost compared to methanogens from non-permafrost habitats. FEMS Microbiol Ecol 61:16–25.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in Arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl. Environ Microbiol 71:5710–5718.

    Article  PubMed  CAS  Google Scholar 

  • Nolan M, Brigham-Grette J (2007) Basic hydrology, limnology, and meteorology of modern Lake El’gygytgyn, Siberia. J Paleolimnol 37:17–35.

    Article  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797.

    Article  PubMed  CAS  Google Scholar 

  • Omelchenko MB, Vasilieva LV, Zavarzin GA, Savel’eva ND, Lysenko AM, Mityushina LL, Khmelenina VN, Trotsenko YA (1996) A novel psychrophilic methanotroph of the genus Methylobacter. Microbiology 65:339–343.

    Google Scholar 

  • Omelyansky VL (1911) Bacteriological investigation of the Sanga mammoth and surrounding soil. Arkhiv Biologicheskikh Nauk (Scientific Biological Archive) 16:335–340 (in Russian).

    Google Scholar 

  • Orvig S (1970) Climates of the Polar Regions. World Survey of Climatology. Elsevier, New York.

    Google Scholar 

  • Ostroumov V (2004) Physico-chemical processes in cryogenic soils. In: Kimble JM (ed) Cryosols, Springer, Berlin, pp 347–364.

    Google Scholar 

  • Ostroumov V, Siegert C (1996) Exobiological aspects of mass transfer in microzones of permafrost deposits. Adv Space Res 18:79–86.

    Article  CAS  Google Scholar 

  • Overduin P (2007) The expedition COAST I. In: Schirrmeister L. (ed.) Expeditions in Siberia in 2005. Russian-German Cooperation System Laptev Sea. Reports on Polar Research 550:1–39.

    Google Scholar 

  • Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59:500–512.

    Article  PubMed  CAS  Google Scholar 

  • Pikuta EV, Marsic D, Bej A, Tang J, Krader P, Hoover RB (2005) Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobic bacterium isolated from permafrost of the Fox tunnel in Alaska. Int J Syst Evol Microbiol 55:473–478.

    Article  PubMed  CAS  Google Scholar 

  • Popp TJ, Chanton JP, Whiting GJ, Grant N (2000) Evaluation of methane oxidation in the rhizosphere of a Carex dominated fen in north central Alberta, Canada. Biogeochem 51:259–281.

    Article  CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci 101:4631–4636.

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Hansen T, Widdel F (2006) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.) Prokaryotes, vol 2, Springer, New York, pp 659–768.

    Chapter  Google Scholar 

  • Rachold V, Are FE, Atkinson DE, Cherkashov G, Solomon SM (2005) Arctic coastal dynamics (ACD): An introduction. Geo-Marine Lett 25:63–68.

    Article  Google Scholar 

  • Rachold V, Bolshiyanov DY, Grigoriev MN, Hubberten HW, Junkers R, Kunitsky VV, Merker F, Overduin P, Schneider W (2007) Nearshore Arctic subsea permafrost in transition. EOS 88:149–150.

    Article  Google Scholar 

  • Ramakrishnan B, Lueders T, Dunfield PF, Conrad R, Friedrich MW (2001) Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol Ecol 37:175–186.

    Article  CAS  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233.

    Article  PubMed  CAS  Google Scholar 

  • Rivkina EM, Gilichinsky D, Wagener S, Tiedje J and McGrath J (1998) Biochemical activity of anaerobic microorganisms from buried permafrost sediments, Geomicrobiol 15:187–193.

    Article  Google Scholar 

  • Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221.

    Article  PubMed  CAS  Google Scholar 

  • Romanovskii NN, Hubberten H-W, Gavrilov AV, Eliseeva AA, Tipenko GS (2005) Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Marine Lett 25:167–182.

    Article  CAS  Google Scholar 

  • ROSHYDROMET (2004) Russian Federal Service for Hydrometeorology and Environmental Monitoring, http://www.worldweather.org/107/c01040.htm.

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101.

    Article  PubMed  CAS  Google Scholar 

  • Šantrůčková H, Bird MI, Kalaschnikov YN, Grund M, Elhottova D, Šimek M, Grigoryev S, Gleixner G, Arneth A, Schulze E-D, Lloyd J (2003) Microbial characteristics of soils on a latitudinal transect in Siberia. Global Change Biol 9:1106–1117.

    Article  Google Scholar 

  • Schink B, Stams AJM (2006) Syntrophism among Prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.) Prokaryotes, vol 2, Springer, New York, pp 309–335.

    Chapter  Google Scholar 

  • Shcherbakova VA, Chuvilskaya NA, Rivkina EM, Pecheritsyna SA, Laurinavichius KS, Suzina NE, Osipov GA, Lysenko AM, Gilichinsky DA, Akimenko VK (2005) Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: Description Clostridium algoriphilum sp. nov. Extremophiles 9:239–246.

    Article  PubMed  CAS  Google Scholar 

  • Shi T, Reevers R, Gilichinsky D, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microbial Ecol 33:167–179.

    Article  Google Scholar 

  • Simankova MV, Kotsyurbenko OR, Stackebrandt E, Kostrikina NA, Lysenko AM, Osipov GA, Nozhevnikova AN (2000) Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil. Arch Microbiol 174:440–447.

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Stone R, Fahrenkamp-Uppenbrink J (2002) Trouble in polar paradise: Polar science. Science 297:1489–1492.

    Article  CAS  Google Scholar 

  • Soil Survey Staff (1999) Soil Taxonomy - A basic system of soil classification for making and interpreting soil surveys, 2nd ed. US Government printing Office, Washington D.C.

    Google Scholar 

  • Soina VS, Lebedeva EV, Golyshina OV, Fedorov-Davydov DG, Gilichinsky DA (1991) Nitrifying bacteria from permafrost deposits of the Kolyma lowland. Microbiologia 60:187–190 (in Russian).

    Google Scholar 

  • Spirina EV, Fedorov-Davydov DG (1998) Microbiological characterization of cryogenic soils in the Kolymskaya Lowland. Eurasian Soil Sci 31:1331–1344.

    Google Scholar 

  • Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66:271–294.

    Article  PubMed  CAS  Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Nakayama T, Kurihara T, Nishino T, Esaki N (2001) Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. J Biosci Bioeng 92:144–148.

    Article  PubMed  CAS  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2005) Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol Ecol 53:15–26.

    Article  PubMed  CAS  Google Scholar 

  • Van Everdingen R (2005) Multi-language glossary of permafrost and related ground-ice terms. National Snow and Ice Data Center/World Data Center for Glaciology. Boulder, Colorado, USA.

    Google Scholar 

  • Van Vliet-Lanoë B (1991) Differential frost heave, load casting and convection: Converging mechanisms; a discussion of the origin of cryoturbations. Permafrost Periglac Process 2:123–139.

    Article  Google Scholar 

  • Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje J (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173.

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL, Gilichinsky DA, Tiedje JM (2006) Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6:400–414.

    Article  PubMed  CAS  Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvih A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: Facts and hypothesis. FEMS Microbiol Rev 20:277–290.

    Article  CAS  Google Scholar 

  • Wagner D, Gattinger A, Embacher A, Pfeiffer EM, Schloter M, Lipski A (2007) Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget. Global Change Biol 13:1089–1099.

    Article  Google Scholar 

  • Wagner D, Kobabe S, Pfeiffer EM, Hubberten HW (2003) Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafrost Periglac Process 14:173–185.

    Article  Google Scholar 

  • Wagner D, Lipski A, Embacher A, Gattinger A (2005) Methane fluxes in permafrost habitats of the Lena Delta: Effects of microbial community structure and organic matter quality. Environ Microbiol 7:1582–1592.

    Article  PubMed  CAS  Google Scholar 

  • Wagner D, Spieck E, Bock E, Pfeiffer EM (2001) Microbial life in terrestrial permafrost: Methanogenesis and nitrification in Gelisols as potentials for exobiological processes. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: The Quest for the Conditions of Life. Springer. Berlin, pp 143–159.

    Google Scholar 

  • Wallenstein MD, McMahon S, Schimel J (2007) Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol Ecol 59:428–435.

    Article  PubMed  CAS  Google Scholar 

  • Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006a) Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78° N). Int J Sys Evol Microbiol 56:541–547.

    Article  CAS  Google Scholar 

  • Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006b) Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N). Int J Sys Evol Microbiol 56:109–113.

    Article  CAS  Google Scholar 

  • Wartiainen I, Hestnes AG, Svenning MM (2003) Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway) – Denaturing gradient gel electrophoresis analysis of soil DNA and enrichment cultures. Can J Microbiol 49:602–612.

    Article  PubMed  Google Scholar 

  • Washburn AL (1978) Geocryology. A Survey of Periglacial Processes and Environments. Arnold, London.

    Google Scholar 

  • Williams PJ, Smith MW (1989) The Frozen Earth: Fundamentals of Geocryology. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Yershov ED (1998) General Geocryology. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Zak DR, Kling GW (2006) Microbial community composition and function across an arctic tundra landscape. Ecology 87:1659–1670.

    Article  PubMed  Google Scholar 

  • Zhang T, Barry RG, Knowles K, Heginbotton JA, Brown J (1999) Statistics and characteristics of permafrost and ground-ice distribution in the northern hemisphere. Polar Geography 23:132–154.

    Article  Google Scholar 

  • Zhou J, Davey ME, Figueras JB, Rivkina E, Gilichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143:3913–3919.

    Article  PubMed  CAS  Google Scholar 

  • Zimov SA, Schuur EAG, Chapin III FS (2006) Permafrost and the global carbon budget. Science 312:1612–1613.

    Article  PubMed  CAS  Google Scholar 

  • Zvyagintsev DG, Gilichinsky DA, Blagodatskii SA, Vorobyeva EA, Khlenikovam GM, Arkhangelov AA, Kudryavtseva NN (1985) Survival time of microorganisms in permanently frozen sedimentary rock and buried soils. Microbiology 54:155–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, D. (2008). Microbial Communities and Processes in Arctic Permafrost Environments. In: Dion, P., Nautiyal, C.S. (eds) Microbiology of Extreme Soils. Soil Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74231-9_7

Download citation

Publish with us

Policies and ethics