Skip to main content

Biodiversity: Extracting Lessons from Extreme Soils

  • Chapter

Part of the book series: Soil Biology ((SOILBIOL,volume 13))

The organisms that live in extreme environments have justifiably captured the imagination of people fascinated with the detection of life and exploration. Reasons for this captivation vary. Some see exploration of these organisms and their environment as a scientific area to provide insight about life on earth, whereas others see economic potential. Whether the extreme environment is human-caused, such as a polluted soil, or a more natural environment (aquatic hot springs, ice, ocean depths, atmosphere, or land), unravelling and understanding the resident organisms, their mechanisms of survival, and the intricate relationship between the habitat and other species, can help us understand life on this planet and elsewhere. Because of global changes, many aspects of extreme environments, such as the identity and types of organisms and communities, the biological traits that allow evolutionary success in a harsh environment, the patterns of distribution of these organisms, the factors controlling their distribution, and their influence on and feedback from ecosystem processes, have increasing relevance to all terrestrial ecosystems. This chapter examines how extreme soils as a habitat for biota can inform our general knowledge of terrestrial biodiversity in many other ecosystems. A brief background on soil biodiversity from other terrestrial systems is presented to set the stage for lessons derived from studies of extreme soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aislabie J, Chhour K-L, Saul D, Miyauchi S, Ayton J, Paetzold R, Balks M (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056

    Article  CAS  Google Scholar 

  • Alley R, et al. (2007) Climate Change 2007: The Physical Science Basis. (http://www.usssp-iodp.org/PDFs/SPM2feb07.pdf)

  • Ayres E, Wall DH, Adams BJ, Barrett JE, Virginia RA (2007) Unique similarity of faunal communities across aquatic-terrestrial interfaces in a polar desert ecosystem. Ecosystems DOI: 10.1007/s10021-007-9035-x

    Google Scholar 

  • Bardgett RD (2005) The Biology of Soil. Oxford University Press, New York

    Google Scholar 

  • Bardgett RD, Yeates G, Anderson J (2005) Patterns and determinants of soil biological diversity. In: Bardgett R, Usher M, Hopkins D (eds) Biological Diversity and Function in Soils. Cambridge University Press, New York, pp 100–118

    Google Scholar 

  • Barrett JE, Virginia RA, Lyons WB, McKnight DM, Priscu JC, Doran PT, Fountain AG, Wall DH, Moorhead DL (2007) Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. J Geophys Res 112:G01010

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Cary SC, Adams BJ, Hacker AL, Aislabie JM (2006) Co-variation in soil biodiversity and biogeochemistry in Northern and Southern Victoria Land, Antarctica. Antarct Sci 18:535–548

    Article  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Adams BJ (unpublished) Decline of a dominant invertebrate species contributes to altered carbon cycling in low diversity soil ecosystem

    Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Parsons AH, Powers LE, Burkins MB (2004) Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85:3105–3118

    Article  Google Scholar 

  • Block W (1982) Supercooling points of insects and mites on the Antarctic Peninsula. Ecol Entomol 7:1–8

    Article  Google Scholar 

  • Boag B, Yeates G (1998) Soil nematode biodiversity in terrestrial ecosystems. Biodiv Conserv 7:617–630

    Article  Google Scholar 

  • Bokhorst S, Ronfort C, Huiskes A, Convey P, Aerts R (2007) Food choice of Antarctic soil arthropods clarified by stable isotope signatures. Pol Biol, Published online DOI 10.1007/s00300-007-256-4

    Google Scholar 

  • Browne J, Dolan K, Tyson T, Goyal K, Tunnacliffe A, Burnell A (2004) Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae. Eukaryot Cell 3:966–975

    Article  PubMed  CAS  Google Scholar 

  • Coleman DC, Elliot ET, Blair JM, Freckman DW (1999) Soil invertebrates. In: Robertson G, Coleman D, Bledsoe C, Phillips S (eds) Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, New York, pp 349–377

    Google Scholar 

  • Convention on Biological Diversity (2004) Decisions adopted by the conference of the parties to the convention of biological diversity at its seventh meeting. (http://www.cbd.int/doc/decisions/COP-07-dec-en.pdf)

  • Convey P, Block W, Peat H (2003) Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? Global Change Biol 9:1718–1730

    Article  Google Scholar 

  • Convey P, McInnes S (2005) Exceptional tardigrade-dominated ecosystems in Ellsworth Land, Antarct. Ecol 86:519–527

    Article  Google Scholar 

  • Courtright EM, Wall DH, Virginia RA (2001) Determining habitat suitability for soil invertebrates in an extreme environment: The McMurdo Dry Valleys, Antarctica. Antarct Sci 13:9–17

    Article  Google Scholar 

  • Cowan D, Tow L (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690

    Article  PubMed  CAS  Google Scholar 

  • Crowe J, Madin K (1975) Anhydrobiosis in nematodes: Evaporative water loss and survival. J Exp Zool 193:323–333

    Article  Google Scholar 

  • Demeure Y, Freckman D, Van Gundy S (1979) In vitro response of four species of nematodes to desiccation and discussion of this and related phenomena. Rev Nématol 2:203–210

    Google Scholar 

  • Doran P, Priscu J, Lyons W, Walsh J, Fountain A, McKnight D, Moorhead D, Virginia R, Wall D, Clow G, Fritsen C, McKay C, Parsons A (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520

    Article  PubMed  CAS  Google Scholar 

  • Ducarme X, André HM, Lebrun P (1998) Extracting endogenous microarthropods: A new flotation method using 1,2-dibromoethane. Eur J Soil Biol 34:143–150

    Article  Google Scholar 

  • Eggleton P, Bignell D, Sands W, Mawdsley N, Lawton C, Wood T, Bignell N (1996) The diversity, abundance, and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Phil Trans R Soc London 351:51–68

    Article  Google Scholar 

  • Eggleton P, Bignell D, Sands W, Waite B, Wood T, Lawton J (1995) The species richness of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, southern Cameroon. J Trop Ecol 11:85–98

    Article  Google Scholar 

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Article  Google Scholar 

  • European Commission on Soil Protection (2006) A strategy to keep Europe’s soils robust and healthy. (http://ec.europa.eu/environments/soil/index.htm#publications)

  • Fenchel T, Finlay B (2004) The ubiquity of small species: Patterns of local and global diversity. BioScience 54:777–784

    Article  Google Scholar 

  • Fierer N, Jackson R (2006) The diversity and biogeography of soil bacterial communities. Proc Nat Acad Sci USA 103:626–631

    Article  PubMed  CAS  Google Scholar 

  • Finlay B (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Freckman DW, Demeure Y, Munnecke D, Van Gundy S (1980) Resistance of the anhydrobiotic Aphelenchus avenae to methyl bromide fumigation. J Nematol 12:19–22

    PubMed  CAS  Google Scholar 

  • Freckman DW, Virginia R (1989) Plant-feeding nematodes in deep-rooting desert ecosystems. Ecology 70:1665–1678

    Article  Google Scholar 

  • Freckman DW, Virginia R (1997) Low diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369

    Article  Google Scholar 

  • Gaston K (1996) Species-range-size distributions: Patterns, mechanisms, and implications. Trends Ecol Evol 11:197–201

    Article  Google Scholar 

  • Goyal K, Tisi L, Basran A, Browne J, Burnell A, Zurdo J, Tunnacliffe A (2003) Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278:12977–12984

    Article  PubMed  CAS  Google Scholar 

  • Heemsbergen D, Berg M, Loreau M, van Haj J, Faber J, Verhoef H (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020

    Article  PubMed  CAS  Google Scholar 

  • Hogg I, Cary S, Convey P, Newsham K, O’Donnell A, Adams B, Aislabie J, Frati F, Stevens M, Wall D (2006) Biotic interactions in Antarctic terrestrial ecosystems: Are they a factor? Soil Biol Biochem 38:3035–3040

    Article  CAS  Google Scholar 

  • Hughes Martiny J, et al. (2006) Microbial biogeography: Putting microorganisms on the map. Nature Rev 4:102–112

    Article  CAS  Google Scholar 

  • Hunt H, Wall D (2002) Modelling the effects of loss of soil biodiversity on ecosystem function. Global Change Biol 8:33–50

    Article  Google Scholar 

  • Kareiva P, Marvier M (2003) Conserving biodiversity coldspots. Am Sci 91:344–351

    Google Scholar 

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of Eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972

    Article  PubMed  CAS  Google Scholar 

  • Loreau M, Thebault E (2005) Food webs and the relationship between biodiversity and ecosystem function. In: de Ruiter P, Wolters V, Moore J (eds) Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development and Environmental Change. Academic Press, Amsterdam, pp 270–294

    Google Scholar 

  • Maraun M, Schatz H, Scheu S (2007) Awesome or ordinary? Global diversity patterns of oribatid mites. Ecography 30:209–216

    Google Scholar 

  • McKnight D, Niyogi D, Alger A, Bomblies A, Conovitz P, Tate M (1999) Dry Valley streams in Antarctica: Ecosystems waiting for water. BioScience 49:985–995

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Our Human Planet: Summary for Decision Makers. World Resources Institute, Washington, DC

    Google Scholar 

  • Montiel P, Grubor-Lajsic G, Worland M (1998) Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus J Insect Physiol 44:211–219

    Google Scholar 

  • Moore J, de Ruiter P (2000) Invertebrates in detrital food webs along gradients of productivity. In: Coleman D, Hendrix P (eds) Invertebrates as Webmasters in Ecosystems. CABI, New York, pp 161–184

    Google Scholar 

  • Nkem JM, Wall DH, Virginia RA, Barrett JE, Broos E, Porazinska D, Adams BJ (2006) Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Pol Biol 29:346–352

    Article  Google Scholar 

  • Pickup J (1990) Strategies of cold-hardiness in three species of Antarctic dorylaimid nematodes. J Comp Physiol B 160:167–173

    Article  Google Scholar 

  • Poage M, Barrett JE, Virginia RA, Wall DH The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. Arct Antarct Alp Res (in press)

    Google Scholar 

  • Porazinska DL, Wall DH, Virginia RA (2002) Population age structure of nematodes in the Antarctic Dry Valleys: Perspectives on time, space, and habitat suitability. Arct Antarct Alp Res 34:159–168

    Article  Google Scholar 

  • Pugh P, Dartnall H (1994) The Acari of fresh- and brackish water habitats in the Antarctic and sub-Antarctic regions. Pol Biol 14:401–404

    Article  Google Scholar 

  • Richard K, Convey P, Block W (1994) The terrestrial arthropod fauna of the Byers-Peninsula, Livingston-Island, South-Shetland-Islands. Pol Biol 14:371–379

    Article  Google Scholar 

  • Roscher C, Schumacher J, Baade J, Wilcke W, Gleixner G, Weisser W, Scmid B, Schulze E (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121

    Article  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger W, Raikes J, Hartley A, Cross A (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374

    Article  Google Scholar 

  • Schröter D, Wolters V, de Ruiter P (2003) Carbon and nitrogen mineralisation in the decomposer food webs of a European forest transect. Oikos 102:294–308

    Article  Google Scholar 

  • Sinclair B, Sjursen H (2001) Cold tolerance of the Antarctic springtail Gomphicephalus hodgsoni (Collembola, Hypogastruridae). Antarct Sci 13:271–279

    Article  Google Scholar 

  • Sjögersten S, van der Wal R, Woodin S (2006) Small-scale hydrological variation determines landscape carbon dioxide fluxes in the high Arctic. Biogeochemistry 80:205–216

    Article  Google Scholar 

  • Smith J, Tow L, Stafford W, Cary C, Cowan D (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    Article  PubMed  Google Scholar 

  • Swift MJ, Andren O, Brussaard L, Briones M, Couteaux MM, Ekschmitt K, Kjoller A, Loiseau P, Smith P (1998) Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies. Global Change Biol 4:729–743

    Article  Google Scholar 

  • Treonis A, Wall D (2005) Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic Dry Valleys. Integr Comp Biol 45:741–750

    Article  Google Scholar 

  • Treonis A, Wall DH, Virginia R (1999) Invertebrate biodiversity in Antarctic Dry Valley soils and sediments. Ecosystems 2:482–492

    Article  Google Scholar 

  • UN Convention to Combat Desertification (1997) Text of the United Nations Convention to Combat Desertification. (http://www.uccd.int/convention/text/convention.php)

  • Wall DH (ed) (2004) Sustaining Biodiversity and Ecosystem Services in Soils and Sediments. Island Press, Washington, D.C.

    Google Scholar 

  • Wall DH (2007) Global change tipping points: Above- and below-ground biotic interactions in a low diversity ecosystem. Phil Trans R Soc B DOI: 10.1098/rstb.2006.1950

    Google Scholar 

  • Wall DH, Virginia RA (1999) Controls on soil biodiversity: Insights from extreme environments. Appl Soil Ecol 13:137–150

    Article  Google Scholar 

  • Wall DH, Virginia RA (2000) The world beneath our feet: Soil biodiversity and ecosystem functioning. In: Raven PR, Williams T (eds) Nature and Human Society: The Quest for a Sustainable World. National Academy of Sciences and National Research Council, Washington, DC, pp 225–241

    Google Scholar 

  • Wardle D (2002) Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Wardle DA, Brown VK, Behan-Pelletier V, St. John M, Wojtowicz T, Brussaard L, Hunt HW, Paul EA, Wall DH (2004) Vulnerability to global change of ecosystem goods and services driven by soil biota. In: Wall DH (ed) Sustaining Biodiversity and Ecosystem Services in Soil and Sediments. Island Press, Washington DC, pp 101–136

    Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gomez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398

    Article  PubMed  Google Scholar 

  • Wharton D (2003) The environmental physiology of Antarctic terrestrial nematodes: A review. J Comp Physiol B 173:621–628

    Article  PubMed  CAS  Google Scholar 

  • Willig M, Kaufman D, Stevens R (2003) Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–313

    Article  Google Scholar 

  • Wolters V, et al. (2000) Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: Implications for ecosystem functioning. BioScience 50:1089–1098

    Article  Google Scholar 

  • Worland M, Lukesova A (2000) The effect of feeding on specific algae on the cold-hardiness of two Antarctic micro-arthropods (Alaskozetes antarcticus and Crytopygus antarcticus). Pol Biol 23:766–774

    Article  Google Scholar 

  • Young I, Crawford J (2004) Interactions and self-organization in the soil-microbe complex. Science 304:1634–1637

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wall, D.H. (2008). Biodiversity: Extracting Lessons from Extreme Soils. In: Dion, P., Nautiyal, C.S. (eds) Microbiology of Extreme Soils. Soil Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74231-9_4

Download citation

Publish with us

Policies and ethics