Skip to main content

Endophytes and Rhizosphere Bacteria of Plants Growing in Heavy Metal-Containing Soils

  • Chapter
Book cover Microbiology of Extreme Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 13))

As a consequence of industrialization during the last centuries, the heavy metal concentration of soils has increased worldwide (Adriano 2001). Hot spots of soil contamination are located in areas of large industrial activities, where surrounding agricultural areas are affected by atmospheric deposition of heavy metals. Also, agricultural practices, such as the application of sewage sludge or phosphate fertilisers, has led to increased metal concentration in soils (Puschenreiter et al. 2005a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003). Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158: 219–224

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risk of Metals. 2nd edn., Springer, New York

    Google Scholar 

  • Agarwhal S, Shende ST (1987) Tetrazolium reducing microbes inside the roots of Brassica species. Curr Sci 56:187–188

    Google Scholar 

  • Amir H, Pineau R (2003) Release of Ni and Co by microbial activity in New Caledonian ultramafic soils. Can J Microbiol 49:288–293

    Article  PubMed  CAS  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159: 351–360

    Article  CAS  Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations: A review. Water Air Soil Pollut 47:335–379

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which accumulate metallic elements - A review of their distribution, ecology and phytochemistry. Biorecovery 1: 81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos GS (eds) Phytoremediation of Contaminated Soil and Water, CRC Press, Boca Raton, FL, pp 85–107

    Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the Holy Grail – A further step in understanding metal hyperaccumulation? New Phytol 155: 1–4

    Article  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41: 46–53

    Article  CAS  Google Scholar 

  • Bernal MP, McGrath SP (1994) Effects of pH and heavy metal concentrations in elemental composition of Alyssum murale and Raphanus sativus L. Plant Soil 166: 83–92

    Article  CAS  Google Scholar 

  • Beyeler M, Keel C, Michaux P, Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Phytium root rot. FEMS Microbiol Ecol 28:225–233

    Article  CAS  Google Scholar 

  • Bitton G, Freihofer V (1978) Influence of extracellular polysaccharide on the toxicity of copper and cadmium toward Klebsiella aerogenes. Microb Ecol 4:119–125

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64: 3663–3668

    PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000). Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46: 237–245

    Article  PubMed  CAS  Google Scholar 

  • Campbell BG, Thompson JA (1996) 1-Aminocyclopropane-1-carboxylate deaminase genes from Pseudomonas strains. FEMS Microbiol Lett 138:207–210

    Article  PubMed  CAS  Google Scholar 

  • Chao WL, Chen CLF (1991) Role of exopolymer and acid-tolerance in the growth of bacteria in solutions with high copper ion concentrations. J Gen Appl Microbiol 37: 363–370

    Article  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 13:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Cieslinski G, van Rees KCJ, Szmigielska AM, Krishnamurti GSR, Huang PM (1998) Low-molecular-weight organic acids in the rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203: 109–117

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475–486

    Article  PubMed  CAS  Google Scholar 

  • Costacurta A, Keijers V, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasiliense indole-3-pyruvate decarboxylase gene. Mol Gen Genet 243:463–472

    PubMed  CAS  Google Scholar 

  • de Freitas RJ, Germida JJ (1990) A root tissue culture system to study winter wheat-rhizobacteria interactions. Appl Microbiol Biotechnol 33:589–595

    Article  Google Scholar 

  • Dekkers LC, Mulders IHM, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicislycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Mol Plant-Microbe Interact 13:177–1183

    Article  Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Article  PubMed  CAS  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999a) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–573

    Article  PubMed  Google Scholar 

  • de Souza MP, Huang CPA, Chee N, Terry N (1999b) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209: 259–263

    Article  PubMed  Google Scholar 

  • Díaz-Roviña M, Bååth E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62:2970–2977

    Google Scholar 

  • Diels L, Dong QH, van der Lelie D, Baeyens W, Mergeay M (1995) The czc operon of Alcaligenes eutrophus CH34: From resistance mechanism to the removal of heavy metals. J Ind Microbiol 14: 142–153

    Article  PubMed  CAS  Google Scholar 

  • Doelman P, Janson E, Michels M, van Til M (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fert Soils 17:177–184

    Article  CAS  Google Scholar 

  • Evers A, Hancock RD, Martell AE, Motekaitis RJ (1989) Metal ion recognition in ligands with negatively charged oxygen donor groups. Complexation of Fe(III), Ga(III), In(III), Al(III) and other highly charged metal ions. Inorg Chem 28: 2189–2195

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Stipek K, Fischerova Z, Schweiger P, Köllensperger G, Ma LQ, Stingeder G (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37: 5008–5014

    Article  PubMed  CAS  Google Scholar 

  • Francis AJ, Dodge CJ, Gillow JB (1992) Biodegradation of metal citrate complexes and implications for toxic-metal mobility. Nature 356:140–142

    Article  CAS  Google Scholar 

  • Frommel MI, Novak J, Lazarovits G (1991) Growth enhancement and developmental modification of in vitro potato (Solanum tuberosum ssp. tuberosum) as affected by nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    Article  PubMed  CAS  Google Scholar 

  • Gagné S, Richard C, Rousseau H, Antoun H (1987) Xylem-residing bacteria in alfalfa. Can J Microbiol 33:996–1005

    Article  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to micro-organisms and microbial processes in agricultural soils: A review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Glick BR (2004) Teamwork in phytoremediation. Nature Biotechnol 22:526–527

    Article  CAS  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbroff EB (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2. Soil Biol Biochem 29:1233–1239

    Article  CAS  Google Scholar 

  • Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5: 896–907

    Article  PubMed  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43: 895–914

    Article  CAS  Google Scholar 

  • Hattori H (1996) Decomposition of organic matter with previous cadmium adsorption in soils. Soil Sci Plant Nutr 42: 745–752

    CAS  Google Scholar 

  • Hinojosa MB, Carreira JA, García-Ruíz R, Dick RP (2005) Microbial response to heavy metal polluted soils. J Environ Qual 34:1789–1800

    Article  PubMed  CAS  Google Scholar 

  • Hirsch PR, Jones MJ, McGrath SP, Giller KE (1993) Heavy metals from past applications of sewage sludge decrease the genetic diversity of Rhizobium leguminosarum biovar trifolii populations. Soil Biol Biochem 25:1485–1490

    Article  Google Scholar 

  • Huang J (1986) Ultrastructure of bacterial penetration in plants. Annu Rev Phytopathol 24:141–157

    Article  Google Scholar 

  • Huysman F, Verstraate W, Brookes PC (1994) Effect of manuring practises and increased copper concentrations on soil microbial populations. Soil Biol Biochem 26:103–110

    Article  CAS  Google Scholar 

  • Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW, Sessitsch A (2006) Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst Appl Microbiol 29:634–644

    Article  PubMed  CAS  Google Scholar 

  • Idris R, Trivonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni-hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed  CAS  Google Scholar 

  • Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs PJ, Bardgett RD, Amelung W (2000) Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils 32:390–400

    Article  CAS  Google Scholar 

  • Kidambi SP, Sundin GW, Palmer DA, Chakrabarty AM, Bender CL (1995) Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 61:2172–2179

    PubMed  CAS  Google Scholar 

  • Kozdroj J (1995) Microbial responses to single or successive soil contamination with Cd or Cu. Soil Biol. Biochem 27:1459–1465

    Article  CAS  Google Scholar 

  • Kunito T, Nagaoka K, Tada N, Saeki K, Senoo K, Oyaizu H, Matsumoto S (1997) Characterization of Cu-resistant bacterial communities in Cu-contaminated soils. Soil Sci Plant Nutr 43:709–717

    CAS  Google Scholar 

  • Kunito T, Saeki K, Nagaoka K, Oyaizu H, Matsumoto S (2001) Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur J Soil Biol 37:95–102

    Article  CAS  Google Scholar 

  • Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120

    Article  CAS  Google Scholar 

  • Lasat MM, Kochian LV (2000) Physiology of Zn hyperaccumulation in Thlaspi caerulescens. In: Terry N, Bañuelos GS (eds) Phytoremediation of Contaminated Soil and Water, CRC Press, Boca Raton, FL, pp. 159–169

    Google Scholar 

  • Leita L, de Nobili M, Muhlbachova G, Mondini C, Marchiol L, Zerbi G (1995) Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory conditions. Biol Fertil Soils 19:103–108

    Article  CAS  Google Scholar 

  • Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2002) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytoremed 4:101–115

    Article  CAS  Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytoremediat 3:173–187

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, de Weger LA, Bennett JW (1991) Microbial stimulation of plant growth and protection from disease. Curr Opin Biotechnol 2:457–464

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  PubMed  CAS  Google Scholar 

  • Mahaffee WF, Kloepper JW (1994) Applications of plant growth-promoting rhizobacteria in sustainable agriculture. In: Pankhurst CE, Edwards C, Jeans K (eds) Soil Biota: Management in Sustainable Farming Systems, CSIRO, Australia, pp 23–31

    Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants. 2nd edn. Academic Press, London

    Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Défago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684

    Article  PubMed  CAS  Google Scholar 

  • Mengoni A, Barzanti A, Gonnelli C, Gabrielli R, Bazzicalupo M (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3:691–698

    Article  PubMed  CAS  Google Scholar 

  • Mengoni A, Grassi E, Brazanti A, Biondi EG, Gonnelli C, Kim CK, Bazzicalupo M (2004) Genetic diversity of microbial communities of serpentine soil and of rhizosphere of the Ni-hyperaccumulator plant Alyssum bertolonii. Microb Ecol 48:209–217

    Article  PubMed  CAS  Google Scholar 

  • Mertens J, Springael D, De Troyer I, Cheyns K, Wattiau P, Smolders E (2006) Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil. Environ Microbiol 8:2170.2178

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P, Barr D (1995) The nature and significance of public exposure to arsenic: A review of its relevance to South West England. Environ Geochem Health 17:57–82

    Article  CAS  Google Scholar 

  • Moffett BF, Nicholson FA, Uwakwe NC, Chambers BJ, Harris JA, Hill TCJ (2003) Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol Ecol 43:13–19

    Article  CAS  PubMed  Google Scholar 

  • Morel JL, Mench M, Guckert A (1986) Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol. Fertil. Soils 2: 29–34

    Article  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  • Penyalver R, Oger P, López MM, Farrand SK (2001) Iron-binding compounds from Agrobacterium spp.: biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophore. Appl Environ Microbiol 67:654–664

    Article  PubMed  CAS  Google Scholar 

  • Puschenreiter M, Horak O, Friesl W, Hartl W (2005a) Low-cost agricultural measures to reduce the heavy metal transfer into human food chain – A review. Plant Soil Environ 51:1–11

    Google Scholar 

  • Puschenreiter M, Schnepf A, Molina Millán I, Fitz WJ, Horak O, Klepp J, Schrefl T, Lombi E, Wenzel WW (2005b) Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant Soil 271:205–218

    Article  CAS  Google Scholar 

  • Puschenreiter M, Wieczorek S, Horak O, Wenzel WW (2003) Chemical changes in the rhizosphere of metal hyperaccumulator and excluder Thlaspi species. J Plant Nutr Soil Sci 166:579–584

    Article  CAS  Google Scholar 

  • Quadt-Hallmann A, Benhamou N, Kloepper JW (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43:557–582

    Google Scholar 

  • Rasche F, Velvis H, Zachow C, Berg G, van Elsas JD, Sessitsch A (2006) Impact of transgenic potatoes expressing antibacterial agents on bacterial endophytes is comparable to effects of wildtype potatoes and changing environmental conditions. J Appl Ecol 43:555–566

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of Toxic Metals, John Wiley & Sons, New York, pp 193–229

    Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora ssp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  PubMed  CAS  Google Scholar 

  • Reiter B, Sessitsch A (2006) The bacterial microflora in association with the wildflower Crocus albiflorus. Can J Microbiol 52:1–10

    Article  CAS  Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: An ecological approach. Plant Soil 130:127–134

    Article  Google Scholar 

  • Roos IMM, Hattingh MJ (1983) Scanning electron microscopy Pseudomonas syringae pv. morsprunorum on sweet cherry leaves. Phytopathol Z 108:18–25

    Article  Google Scholar 

  • Salt DE, Benhamou N, Leszczyniecka M, Raskin I (1999) A possible role for rhizobacteria in water treatment by plant roots. Int J Phytoremediat 1:67–69

    Article  CAS  Google Scholar 

  • Salt DE, Krämer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds) Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. Wiley, New York, pp 231–246

    Google Scholar 

  • Sandaa R-A, Torsvik V, Enger Ø (2001) Influence of long-term heavy metal contaminations on microbial communities in soil. Soil Biol Biochem 33:287–295

    Article  CAS  Google Scholar 

  • Sauge-Merle S, Cuiné S, Carrier P, Lecomte-Pradines C, Luu D-T, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Article  PubMed  CAS  Google Scholar 

  • Schat H, Llugany M, Bernhard R (2000) Metal-specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Bañuelos GS (eds) Phytoremediation of Contaminated Soil and Water, CRC Press, Boca Raton, FL, pp 174–188

    Google Scholar 

  • Schlegel HG, Cosson JP, Baker AJM (1991) Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Bot Acta 104:18–25

    CAS  Google Scholar 

  • Scott RI, Chard JM, Hocart MJ, Lennard JH, Graham DC (1996) Penetration of potato tuber lenticels by bacteria in relation to biological control of blackleg disease. Potato Res 39:333–344

    Article  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  PubMed  CAS  Google Scholar 

  • Sizova OI, Lyubun EV, Kochetkov VV, Validov SZ, Boronin AM (2004) Effect of wild and genetically modified rhizosphere bacteria Pseudomonas aureofaciens on the accumulation of arsenic by plants. Appl Biochem Microbiol 40:67–70

    Article  CAS  Google Scholar 

  • Smit E, Leeflang P, Wernars K (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol Ecol 23:249–261

    Article  CAS  Google Scholar 

  • Stoltzfus JR, So R, Malarvithi PP, Ladha JK, de Bruijn FJ (1998) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

    Article  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167

    Article  CAS  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Van Buren AM, Andre C, Ishimaru CA (1993) Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology 83:1406

    Google Scholar 

  • van der Lelie D, Corbisier P, Diels L, Gilis A, Lodewyckx C, Mergeay M, Taghavi S, Spelmans N, Vangronsveld J (1999). The role of bacteria in the phytoremediation of heavy metals. In: Terry N, Banuelos G (eds) Phytoremediation of Contaminated Soil and Water. Lewis, London, UK

    Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and tolerant plants on serpentine soil. Environ Pollut 123:131–138

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WW, Lombi E, Adriano DC (1999) Biogeochemical processes in the rhizosphere: Role in phytoremediation of metal-polluted soils. In: Prasad NMV, Hagemeyer J (eds) Heavy Metal Stress in Plants - From Molecules to Ecosystems. Springer Verlag, Heidelberg, pp. 273–303

    Google Scholar 

  • Whiting SN, de Souza SP, Terry N (2001b) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  PubMed  CAS  Google Scholar 

  • Whiting SN, Leake JR, McGrath SP and Baker AJM (2001a) Assessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with non-accumulator plants and soil extraction. Plant Soil 237:147–156

    Article  CAS  Google Scholar 

  • Wilson D (1995) Endophyte – The evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Zhao FJ, Hamon RE, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151:613–620

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sessitsch, A., Puschenreiter, M. (2008). Endophytes and Rhizosphere Bacteria of Plants Growing in Heavy Metal-Containing Soils. In: Dion, P., Nautiyal, C.S. (eds) Microbiology of Extreme Soils. Soil Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74231-9_15

Download citation

Publish with us

Policies and ethics