Skip to main content

Microbiology of Oil-Contaminated Desert Soils and Coastal Areas in the Arabian Gulf Region

  • Chapter
Microbiology of Extreme Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 13))

Deserts are of global distribution; they cover considerable areas of all continents, with the exception of Europe. Desert soils are poor in organic substances and water, and are usually subjected to rather high temperature in summer and chilling in winter, and to extensive light. In spite of their extreme character, desert soils usually accommodate communities of micro-organisms including actinomycetes, cyanobacteria and other bacteria, fungi, protozoa, and phototrophic microalgae. Many of such micro-organisms live naturally under stress, and must possess special adaptive mechanisms in order to survive and propagate (see Chapter 2). Desert micro—organisms appear to be limited in their physiological activities due to low availability of certain nutrients, according to Liebig's “law of the minimum” (Liebig 1840).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abed RMM, Köster J (2005) The direct role of aerobic heterotropic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodeterior Biodegrad 55:29–37

    Article  CAS  Google Scholar 

  • Abed RMM, Safi NMD, Köster J, de Beer D, El-Nahhal Y, Rullkötter J, Garcia-Pichel F (2002) Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl Environ Microbiol 68:1674–1683

    Article  PubMed  CAS  Google Scholar 

  • Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 155:5–14

    Article  Google Scholar 

  • Al-Awadhi H, Sulaiman RHD, Mahmoud HM, Radwan SS (2007) Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol. In press

    Google Scholar 

  • Alexander M (1994) Biodegradation and Bioremediation, Academic Press, San Diego

    Google Scholar 

  • Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan, SS (1998). Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar Biol 130: 521–527

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Khanafer M, Elyas M, Radwan SS (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Bacteriol 91:533–540

    CAS  Google Scholar 

  • Al-Hasan RH, Sorkhoh NA, Al-Bader D, Radwan SS (1994) Utilization of hydrocarbons by cyanobacteria from microbial mats on oily coasts of the Gulf. Appl Microbiol Biotechnol 41:615–619

    Article  CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Plant roots and associated microbes in clean and contaminated soil. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Applied Biotreatment Association (1989) Case History Compendium. Applied Biotreatment Association, Washington DC

    Google Scholar 

  • Applied Biotreatment Association (1990) The Role of Biotreatment of Oil Spills. Applied Biotreatment Association, Washington DC

    Google Scholar 

  • Atlas RM (1977) Stimulated petroleum biodegradation. Crit Rev Microbiol 5:371–386

    Article  CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol Rev 45:180–209

    PubMed  CAS  Google Scholar 

  • Atlas RM (1995) Bioremediation. Chem Eng News, April 3:32–42

    Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in seawater. Limitation by nitrogen and phosphorus. Biotech Bioeng 14:309–318

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial Ecology, Fundamentals and Applications, 4th edn, Benjamin/Cummings, California

    Google Scholar 

  • Atlas RM, Heintz CE (1973) Ultrastructure of two species of oil-degrading marine bacteria. Can J Microbiol 19:43–45

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM, Pramer D (1990) Focus on bioremediation. ASM News 56:7

    Google Scholar 

  • Bai GY, Brusseau MI, Miller RM (1997) Biosurfactant-enhanced removal of residual hydrocarbon from soil. J Cont Hydrol 25:157–170

    Article  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  PubMed  CAS  Google Scholar 

  • Barabas G, Penyige A, Szabo I, Vargha G, Damianovich S, Matko J, Szollosi J, Radwan SS, Matyus A, Hirano T (2000) Hydrocarbon uptake and utilization by Streptomyces strains. In: Wise DL, Trantolo DJ (eds) Remediation of Hazardous Wastes Contaminated Soils, 2nd edn. Marcel Dekker, New York, pp 291–309

    Google Scholar 

  • Barabas G, Sorkhoh NA, Fardoon F, Radwan SS (1995) n-alkane utilization by oligocarbophilic actinomycete strains from oil-polluted Kuwaiti desert soil. Actinomycetol 9:13–18

    Article  Google Scholar 

  • Bolba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: Microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32:155–164

    Article  Google Scholar 

  • Boulton CA, Ratledge C (1984) The physiology of hydrocarbon-utilizing microorganisms. In: Wiseman A (ed) Topics in Fermentation and Enzyme Technology, vol 9, Ellis Horwood, Chichester, pp 11–77

    Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  • Bragg JR, Prince RC, Wilkinson JB, Atlas RM (1992) Bioremediation for shoreline cleanup following the 1989 Alaskan oil spill. Exxon Co, Houston, TX

    Google Scholar 

  • Buehler M, Schindler J (1984) Aliphatic hydrocarbons. In: Rehm H-J, Reed G (eds) Biotechnology: A Comprehensive Treatise, vol 6a, Verlag Chemie, Weinheim, pp 329–385

    Google Scholar 

  • Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: Theory, procedures and initial results. Appl Environ Microbiol 59:881–891

    PubMed  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, van Baalen C (1980a) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Cerniglia CE, van Baalen C, Gibson DT (1980b) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp. strain JCM. J Gen Microbiol 116:485–494

    CAS  Google Scholar 

  • Cundell AM, Mueller WC, Traxier RW (1976) Morphology and ultrastructure of a Penicillium sp. grown on n-hexadecane or peptone. Appl Environ Microbiol 31:408–414

    PubMed  CAS  Google Scholar 

  • Davies JS, Westlake DWS (1979) Crude oil utilization by fungi. Can J Microbiol 25:146–156

    Article  PubMed  CAS  Google Scholar 

  • Daylan U, Harder H, Hoepner Th (1990) Hydrocarbon biodegradation in sediments and soils. A systematic examination of physical and chemical conditions. II. pH-values. Erdoel Kohle Erdgas Petrochem 43:337–342

    Google Scholar 

  • Demanova NF, Davydov ER, Golobov AD (1980) Assimilation of n-alkanes with a varying length of the carbon chain by the yeast Candida guilliermondii. Prikl Biokhim Mikrobiol 26:5–12

    Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  • Díaz MP, Boyd KG, Grigson SJW, Burgess, JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotech Bioeng 79:145–153

    Article  CAS  Google Scholar 

  • Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol 57:1441–1447

    PubMed  CAS  Google Scholar 

  • Egorov NS, Koronelli TV, Milko ES, Stepanova RA, Rozynov B, Pletenko MG (1986) Comparison of lipid composition among Rhodococcus rubropertinctus R,S and M variants. Microbiologiya 55:227–230

    CAS  Google Scholar 

  • Einsele A (1983) Biomass from higher n-alkanes. In: Rehm H-J, Reed G (eds) Biotechnology- A Comprehensive Treatise in Eight Volumes, vol 3, Verlag Chemie, Weinheim, pp 43–81

    Google Scholar 

  • Ellis BE (1977) Degradation of phenolic compounds by freshwater algae. Plant Sci Lett 8:213–216

    Article  CAS  Google Scholar 

  • Flynn S, Butler J, Vance I (1996) Produced water composition, toxicity and fate. In: Reed M, Johnsen S (eds) Produced Water 2. Environmental Issues and Migration Technologies. Plenum Press, New York, pp. 69–80

    Google Scholar 

  • Fukui S, Tanaka A (1981) Metabolism of alkanes by yeasts. Adv Biochem Eng 19:217–237

    CAS  Google Scholar 

  • Gadd GM (1990) Metal tolerance. In: Edwards C (ed) Microbiology of Extreme Environments. McGraw-Hill, New York, pp 178–210

    Google Scholar 

  • Garcia De Oteyza T, Grimalt JO, Diestra E, Solé T, Esteve I (2004) Changes in the composition of the polar and apolar crude oil fractions under the action of Microcoleus consortia. Appl Microbiol Biotechnol 66:226–232

    Article  CAS  Google Scholar 

  • Gibbs CF (1975) Quantitative studies on marine biodegradation of oil. I. Nutrient limitation at 14°C. Proc Roy Soc London 188:61–82

    Article  CAS  Google Scholar 

  • Gibbs CF, Pugh KB, Andrews AP (1975) Quantitative studies on marine biodegradation of oil. II. Effect of temperature. Proc Roy Soc London 188:83–94

    Article  CAS  Google Scholar 

  • Golubic S (1992) Microbial mats of Abu Dhabi. In: Margulis L, Olendzenski L (eds) Environmental Evolution: Effects of the Origin and Evolution of Life on Planet Earth, MIT Press, Cambridge, MA, pp. 103–130

    Google Scholar 

  • Grötzschel S, Köster J, Abed RMM, de Beer D (2002) Degradation of petroleum model compounds immobilized on clay by a hypersaline microbial mat. Biodegradation 13:273–282

    Article  PubMed  Google Scholar 

  • Halvorson HO, Pramer D, Rogul M, eds (1985) Engineered Organisms in the Environment: Scientific Issues. American Society of Microbiology, Washington DC

    Google Scholar 

  • Hartmann J, Reineke W, Knackmuss HJ (1979) Metabolism of 3-chloro,4-chloro, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol 37:421–428

    PubMed  CAS  Google Scholar 

  • Hinchee RE, Olfenbuttel RE, eds (1991a). In Situ Bioreclamation: Applications and Investigations for Hydrocarbon Contaminated Site Remediation. Butterworth-Heinemann, Boston

    Google Scholar 

  • Hinchee RE, Olfenbuttel RE, eds (1991b). On Site Bioreclamation: Processes for Xenobiotic And Hydrocarbon Treatment. Butterworth-Heinemann, Boston

    Google Scholar 

  • Hoffman B, Rehm H-J (1978) Degradation of n-alkanes by mucorales IV. Lipid formation and fatty acid composition of Absidia spinosa, Cunninghamella echinulata and Mortierella isabellina grown on glucose and some n-alkanes. Eur J Appl Microbiol Biotechnol 5:189–195

    Article  Google Scholar 

  • Ivshina IB, Nesterenko OA, Glazacheva LE, Shekhovtsev VP (1982) Facultative gas assimilating Rhodococcus rhodochrous studied by electron microscope. Mikrobiologiya 51:477–481

    Google Scholar 

  • Jannasch HW (1967) Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol Oceanog 12:264–271

    Article  CAS  Google Scholar 

  • Kant U, Kiesewetter K, Michaelsen M, Hoepner T (1985) Estimation of hydrocarbon biodegradation velocities in tidal sediments under standard conditions. Final report to the commission of European Communities, Oldenburg, Germany

    Google Scholar 

  • Kargi F, Dincer AR (2000) Use of halophilic bacteria in biological treatment of saline wastewater by fed-batch operation. Water Environ Res 72:170–174

    Article  CAS  Google Scholar 

  • Kennedy RS, Finnerty WR (1975) Microbial assimilation of hydrocarbons. 1. The fine structure of hydrocarbon-oxidizing Acinetobacter sp. Arch Microbiol 10:75–83

    Article  Google Scholar 

  • Kirk PW, Gordon AS (1988) Hydrocarbon degradation by filamentous marine higher fungi. Mycologia 80:776–782

    Article  CAS  Google Scholar 

  • Klug MJ, Markovetz AJ (1971) Utilization of aliphatic hydrocarbons by microorganisms. Adv Microb Physiol 5:1–43

    Article  PubMed  CAS  Google Scholar 

  • Korda A, Santas P, Tenente A, Santas R (1997) Petroleum hydrocarbon bioremediation: Sampling and analytical techniques, in situ treatment and commercial microorganisms currently used. Appl Microbiol Biotecnol 48:677–686

    Article  CAS  Google Scholar 

  • Koval EZ, Redchitz TI (1978) Fatty inclusions in the mycelium of aspergilli grown under surface cultivation on media with hydrocarbons. Mikrobiol Zh 40:736–740

    PubMed  CAS  Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids-biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  PubMed  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbiological degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    PubMed  CAS  Google Scholar 

  • Leavitt ME, Brown KI (1994) Biostimulation versus bioaugmentation-three case studies. In: Hinchee, RE, Alleman BC, Hoeppel RE, Miller RN (eds) Hydrocarbon Bioremediation, Lewis, Boca Raton, FL, pp 72–79

    Google Scholar 

  • Levi ID, Shennan JL, Ebbon GP (1979) Biomass from liquid n-alkanes. In: Rose AH (ed) Microbial Biomass. Academic Press, New York, London, pp 361–491

    Google Scholar 

  • Liebig J (1840) Chemistry in its Application to Agriculture and Physiology. Taylor and Walton, London

    Google Scholar 

  • Lin HT, Iida M, Iizaka H (1971a) Formation of organic acids and ergosterol from n-alkanes by fungi isolated from aircraft fuel. J Ferment Technol 49:206–212

    CAS  Google Scholar 

  • Lin HT, Iida M, Iizaka H (1971b) Formation of organic acids and ergosterol from n-alkanes by fungi isolated from oil fields in Japan. J Ferment Technol 49:771–777

    CAS  Google Scholar 

  • Loginova LG, Bogdanova TI, Seregina IM (1981) Growth of obligate thermophilic bacteria in a medium with paraffin. Microbiologiya 50:49–54

    CAS  Google Scholar 

  • Makkar RS, Cameotra SS (1998) Production of biosurfactant at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. J Ind Microbiol Biotechnol 20:48–52

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434

    Article  PubMed  CAS  Google Scholar 

  • McKinnon M, Vine P (1991) Tides of War. IMMEL, London

    Google Scholar 

  • Morita RY (1982) Starvation-survival of heterotrophs in the marine environment. Adv Microb Ecol 6:171–198

    Google Scholar 

  • Mueller JG, Chapman PJ, Pritchard PH (1989) Creosote-contaminated sites: Their potential for bioremediation. Environ Sci Technol 23:1197–1201

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Neidhardt EC, Ingraham JL, Schaechter M (1990) Physiology of the Bacterial Cell. Sinauer, Sunderland, MA

    Google Scholar 

  • Novitsky JA, Morita RY (1976) Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol 32:617–632

    PubMed  CAS  Google Scholar 

  • Novitsky JA, Morita RY (1977) Survival of a psychrophilic marine vibrio under long-term nutrient starvation. Appl Environ Microbiol 33:635–641

    PubMed  CAS  Google Scholar 

  • Novitsky JA, Morita RY (1978) Possible strategy for the survival of marine bacteria under starvation conditions. Mar Biol 48:289–295

    Article  Google Scholar 

  • Ornodera M, Endo Y, Ogasawa N (1989) Oxidation of gaseous hydrocarbons by a gaseous hydrocarbon assimilating mold, Scedosporium sp. A-4. Agric Biol Chem 53:1947–1951

    Google Scholar 

  • Polonenko DR, Scher FM, Kloepper JW, Singleton CA, Laliberte M, Zaleska I (1987) Effects of root colonizing bacteria on nodulation of soybean roots by Bradyrhizobium japonicum. Can J Microbiol 33:498–503

    Article  Google Scholar 

  • Prantera MT, Drozdowicz A, Gomes-Leite S, Soares-Rosado A (2002) Degradation of gasoline aromatic hydrocarbons by two N2-fixing soil bacteria. Biotechnol Lett 24:85–89

    Article  CAS  Google Scholar 

  • Pritchard PH, Costa CF (1991) EPA’s Alaska oil spill bioremediation project. Environ Sci Technol 25:372–379

    Article  CAS  Google Scholar 

  • Radwan SS (1990) Gulf oil spill. Nature 350:456

    Article  Google Scholar 

  • Radwan SS, Al-Awadhi H, El-Nemr IM (2000) Cropping as a phytoremediation practice for oily desert soil with reference to crop safety as food. Int J Phytoremed 2:383–396

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Awadhi H, Sorkhoh NA, El-Nemr I (1998a) Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremediation for oily Kuwaiti desert. Microbiol Res 153:247–251

    CAS  Google Scholar 

  • Radwan SS, Al-Hasan RH (2001) Potential application of coastal biofilm-coated gravel particles for treating oily waste. Aqu Microb Ecol 23:113–117

    Article  Google Scholar 

  • Radwan SS, Al-Hasan RH, Al-Awadhi H, Salamah S, Abdullah HM (1999) Higher oil biodegradation potential at the Arabian Gulf coast than in the water body. Mar Biol 135:741–745

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Hasan RH, Mahmoud HM, Eliyas M (2007a) Oil-utilizing bacteria associated with fish from the Arabian Gulf. J Appl Microbiol (in press)

    Google Scholar 

  • Radwan SS, Al-Hasan RH, Salamah S, Al-Dabbous S (2002) Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. Int Biodeter Biodeg 50:55–59

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Hasan RH, Salamah S, Khanafer M (2005a) Oil-consuming microbial consortia floating in the Arabian Gulf. Int Biodeter Biodeg 56:28–33

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Mailem D, El-Nemr I, Salamah S (2000) Enhanced remediation of hydrocarbon contaminated desert soil fertilized with organic carbons. Int Biodet Biodeg 46:129–132

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Muteirie AS (2001) Vitamin requirements of hydrocarbon utilizing soil bacteria. Microbiol Res 155:301–307

    PubMed  CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr IM (2005b) Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas. Int J Phytoremed 7:19–32

    Article  CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr IM, Khanafer M (2007b) Hydrocarbon utilization by nodule bacteria and plant growth promoting rhizobacteria. Int J Phytoremed (in press)

    Google Scholar 

  • Radwan SS, et al. (1998b) Hydrocarbon uptake by Streptomyces. FEMS Microbiol Lett 169:87–94

    Article  PubMed  CAS  Google Scholar 

  • Radwan SS, Sorkhoh NA (1993) Lipids of n-alkane-utilizing microorganisms and their application potential. Adv Appl Microbiol 39:29–90

    Article  CAS  Google Scholar 

  • Radwan SS, Sorkhoh NA, Al-Hasan RH (1995a) Self-cleaning and bioremediation potential of the Arabian Gulf. In Cheremisinoff P (ed) Encyclopedia of Environmental Control Technology, vol 9, Gulf, Houston, pp 901–924

    Google Scholar 

  • Radwan SS, Sorkhoh NA, El-Nemr I (1995b) Oil-biodegradation around roots. Nature 376:302

    Article  PubMed  CAS  Google Scholar 

  • Radwan SS, Sorkhoh NA, El-Nemr I, El-Desouky AF (1997) A feasibility study on seeding as a bioremediation practice for the oily Kuwaiti desert. J Appl Microbiol 83:353–358

    Article  Google Scholar 

  • Radwan SS, Sorkhoh NA, Fardoun F, Al-Hasan RH (1995c) Soil managements enhancing hydrocarbon biodegradation in the polluted Kuwaiti desert. Appl Microbiol Biotechnol 44:265–270

    Article  PubMed  CAS  Google Scholar 

  • Raghukumar C, Vipparty V, David JJ, Chandramohan D (2001) Degradation of crude oil by cyanobacteria. Appl Microbiol Biotechnol 57:433–436

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C (1978) Degradation of aliphatic hydrocarbons. In: Watkinson I (ed) Developments in Biodeterioration of Hydrocarbons, vol 1, Applied Science, Essex, pp 1–45

    Google Scholar 

  • Redchitz TI (1980) Fatty incorporations in Aspergillus mycelium during submerged cultivation in media with hydrocarbons. Microbiol Zh 42:596–600

    Google Scholar 

  • Redchitz TI, Koval EZ (1979) Formation of volutin inclusions in the mycelium of aspergilli growing on media with hydrocarbons. Mikrobiol Zh 41(1):34–39

    Google Scholar 

  • Rehm H-J, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19:175–216

    CAS  Google Scholar 

  • Reineke W, Knackmuss H-J (1979) Construction of haloaromatic-utilizing bacteria. Nature 277:385–386

    Article  PubMed  CAS  Google Scholar 

  • Riser-Roberts E (1992) Bioremediation of Petroleum Contaminated Sites. CRC Press, Boca Raton, FL

    Google Scholar 

  • Roe TI, Johnsen S, The Norwegian Oil Industry association (1996) Discharges of produced water to the North Sea. In: Reed M, Johnsen S (eds) Produced Water 2. Environmental Issues and Migration Technologies. Plenum Press, New York, pp. 13–25

    Google Scholar 

  • Rosenberg E (1993) Microorganisms to Combat Pollution. Kluwer Academic, Dordrecht

    Google Scholar 

  • Rosenberg E (2006) Hydrocarbon-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, a Handbook on the Biology of Bacteria, 3rd edn, vol 2. Springer, Berlin, pp 564–577

    Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    PubMed  CAS  Google Scholar 

  • Rouse JD, Sabatini DA, Suffita JM, Harwell JH (1994) Influence of surfactants on microbial degradation of organic compounds. Crit Rev Microbiol 24:325–370

    CAS  Google Scholar 

  • Roy I, Shukla SK, Mishra AK (1988) n-Dodecane as a substrate for nitrogen fixation by an alkane-utilizing Azospirillum sp. Curr Microbiol 16:303–309

    Article  CAS  Google Scholar 

  • Sanchez O, Diestra E, Esteve I, Mas J (2005) Molecular characterization of an oil-degrading cyanobacterial consortium. Microb Ecol 50:580–588

    Article  PubMed  CAS  Google Scholar 

  • Scott GL, Finnerty WR (1966) Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species. J Bacteriol 127:481–489

    Google Scholar 

  • Shelford VE (1913) Animal Communities in Temperate America. University of Chicago, Chicago

    Google Scholar 

  • Singer ME, Finnerty WR (1984) Microbial metabolism of straight-chain and branched alkanes. In: Atlas RM (ed) Petroleum Microbiology, Macmillan, New York, pp 1–59

    Google Scholar 

  • Smiles DE (1988) Aspects of the physical environment of soil organisms. Biol Fertil Soils 6:204–215

    Article  Google Scholar 

  • Song HG, Wang X, Bartha R (1990) Bioremediation potential of terrestrial fuel spills. Appl Environ Microbiol 56:652–656

    PubMed  CAS  Google Scholar 

  • Sorkhoh N, Al-Hassan R, Radwan S, Höpner T (1992) Self-cleaning of the Gulf. Nature 359:109

    Article  Google Scholar 

  • Sorkhoh NA, Al-Hasan RH, Khanafer M, Radwan SS (1995) Establishment of oil-degrading bacteria associated with cyanobacteria in oil polluted soil. J Appl Bacteriol 78:194–199

    PubMed  CAS  Google Scholar 

  • Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Crude oil and hydrocarbon degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut 65:1–17

    Article  PubMed  CAS  Google Scholar 

  • Sorkhoh NA, Ibrahim AS, Ghannoum MA, Radwan SS (1993) High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Appl Microbiol Biotechnol 39:123–126

    CAS  Google Scholar 

  • Steppe TF, Olson JB, Paerl HW, Litaker RW, Belnap J (1996) Consortial N2 fixation: A strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiol Ecol 21:149–156

    Article  CAS  Google Scholar 

  • Stoner DL (1994) Biotechnology for the Treatment of Hazardous Waste. Lewis, Boca Raton, FL

    Google Scholar 

  • Sulaiman R (2006) Alkalinity and salinity loving (tolerant) oil-utilizing microorganisms from Kuwait coasts. A thesis submitted for the M.Sc. degree in microbiology, Kuwait University, Kuwait

    Google Scholar 

  • Todd SJ, Cain RB, Schmidt S (2002) Biotransformation of naphthalene and diaryl ethers by green microalgae. Biodegradation 13:229–238

    Article  PubMed  CAS  Google Scholar 

  • Tumeo M, Brandock J, Venator T, Rog S, Owens D (1994) Effectiveness of biosurfactants in removing weathered crude oil from subsurface beach material. Spill Sci Technol Bull 1:53–59

    Article  CAS  Google Scholar 

  • Van Eyk J (1994) Venting and bioventing for the in situ removal of petroleum from soil. In: Hinchee, RE, Alleman BC, Hoeppel RE, Miller RN (eds) Hydrocarbon Bioremediation, Lewis, Boca Raton, FL, pp 243–251

    Google Scholar 

  • Van Ginkel GG, Welten HGJ, de Bont JAM (1987) Oxidation of gaseous and volatile hydrocarbons by selected alkene-utilizing bacteria. Appl Environ Microbiol 53:2903–2907

    PubMed  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward O (2003) Recent advances in petroleum microbiology. Microbiol Molec Biol Rev 67:503–549

    Article  CAS  Google Scholar 

  • Widdel F, Boetius A, Rabus R (2006) Anaerobic biodegradation of hydrocarbons including methane. The Prokaryotes, a Handbook on the Biology of Bacteria, 3rd edn, vol 2. Springer, Berlin, pp 1028–1049

    Google Scholar 

  • Woolard CR, Irvine RL (1994) Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria. Water Environ Res 66:230–235

    CAS  Google Scholar 

  • Zarilla KA, Perry JJ (1984) Thermoleophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch Microbiol 137:286–290

    Article  CAS  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith D (1996) Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–459

    Article  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith D (1997) Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr] growth and physiology of suboptimal root zone temperatures. Ann Bot 79:243–249

    Article  Google Scholar 

  • Zitrides TG (1990) Bioremediation comes of age. Pollut Eng XXII:59–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radwan, S. (2008). Microbiology of Oil-Contaminated Desert Soils and Coastal Areas in the Arabian Gulf Region. In: Dion, P., Nautiyal, C.S. (eds) Microbiology of Extreme Soils. Soil Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74231-9_13

Download citation

Publish with us

Policies and ethics