Skip to main content

Approximation Algorithms for the Traveling Repairman and Speeding Deliveryman Problems with Unit-Time Windows

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2007, RANDOM 2007)

Abstract

Constant-factor, polynomial-time approximation algorithms are presented for two variations of the traveling salesman problem with time windows. In the first variation, the traveling repairman problem, the goal is to find a tour that visits the maximum possible number of locations during their time windows. In the second variation, the speeding deliveryman problem, the goal is to find a tour that uses the minimum possible speed to visit all locations during their time windows. For both variations, the time windows are of unit length, and the distance metric is based on a weighted, undirected graph. Algorithms with improved approximation ratios are given for the case when the input is defined on a tree rather than a general graph. A sketch of NP-hardness is also given for the tree metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for deadline-TSP and vehicle routing with time-windows. In: Proc. 36th ACM Symp. on Theory of Computing, pp. 166–174. ACM Press, New York (2004)

    Google Scholar 

  2. Bar-Yehuda, R., Even, G., Shahar, S.: On approximating a geometric prize-collecting traveling salesman problem with time windows. J. Algorithms 55(1), 76–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward TSP. Preliminary version of [4]

    Google Scholar 

  4. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward TSP. Proc. 44th IEEE Symp. on Foundations of Computer Science , p. 46 (2003)

    Google Scholar 

  5. Chawla, S.: Graph Algorithms for Planning and Partitioning. PhD thesis, Carnegie Mellon University (2005)

    Google Scholar 

  6. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, Springer, Heidelberg (2004)

    Google Scholar 

  7. Focacci, F., Lodi, A., Milano, M.: Solving TSP with time windows with constraints. In: Proc. 1999 Int. Conf. on Logic Programming, pp. 515–529. MIT Press, Cambridge (1999)

    Google Scholar 

  8. Focacci, F., Lodi, A., Milano, M.: Embedding relaxations in global constraints for solving TSP and TSPTW. Annals of Mathematics and Artificial Intelligence 34(4), 291–311 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7(2), 178–193 (1978)

    Article  MathSciNet  Google Scholar 

  10. Garg, N.: A 3-approximation for the minimum tree spanning k vertices. In: Proc. 37th IEEE Symp. on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  11. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In: Proc. 37th ACM Symp. on Theory of Computing, pp. 396–402. ACM Press, New York (2005)

    Google Scholar 

  12. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24, 296–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  14. Karuno, Y., Nagamochi, H., Ibaraki, T.: Better approximation ratios for the single-vehicle scheduling problems on line-shaped networks. Networks 39(4), 203–209 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Schmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons, Chichester (1985)

    MATH  Google Scholar 

  16. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and two. Math. Oper. Res. 18(1), 1–11 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems with time windows. Networks 22, 263–282 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frederickson, G.N., Wittman, B. (2007). Approximation Algorithms for the Traveling Repairman and Speeding Deliveryman Problems with Unit-Time Windows. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2007 2007. Lecture Notes in Computer Science, vol 4627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74208-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74208-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74207-4

  • Online ISBN: 978-3-540-74208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics