Skip to main content

Derandomization of Euclidean Random Walks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4627))

Abstract

We consider the problem of derandomizing random walks in the Euclidean space k. We show that for k = 2, and in some cases in higher dimensions, such walks can be simulated in Logspace using only poly-logarithmically many truly random bits.

As a corollary, we show that the Dirichlet Problem can be deterministically simulated in space \(O(\log n\sqrt{\log\log n})\), where 1/n is the desired precision of the simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saks, M.: Randomization and derandomization in space-bounded computation. In: CCC. Proceedings of 11th Annual IEEE Conference on Computational Complexity, pp. 128–149. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  2. Saks, M., Zhou, S.: \(BP_H SPACE(S) \subseteq DSPACE(S^{3/2})\). Journal of Computer and System Sciences 58(2), 376–403 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Wiley, New York (1989)

    Book  MATH  Google Scholar 

  4. Ahlfors, L.: Complex Analysis. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  5. Nisan, N.: RL ⊂ SC. Computational Complexity 4(1), 1–11 (1994)

    Article  MathSciNet  Google Scholar 

  6. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer and System Sciences 52(1), 43–52 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fuchs, B.A., Shabat, B.V.: Functions of a Complex Variable and Some of Their Applications, vol. 1. Pergamon Press, London (1964)

    MATH  Google Scholar 

  8. Lavrentiev, M.A., Shabat, B.V.: Problems of Hydrodynamics and Their Mathematical Models, Nauka, Moscow (1973)

    Google Scholar 

  9. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  10. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging 23(8), 949–958 (2004)

    Article  Google Scholar 

  11. Binder, I., Braverman, M., Yampolsky, M.: On computational complexity of riemann mapping. Arkiv för Matematik (to appear, 2007)

    Google Scholar 

  12. Pommerenke, C.: Boundary Behaviour of Conformal Maps. Springer, Heidelberg (1992)

    Book  MATH  Google Scholar 

  13. Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge Univ. Press, Cambridge (2004)

    MATH  Google Scholar 

  14. Muller, M.E.: Some continuous Monte Carlo methods for the Dirichlet problem. Ann. Math. Statist. 27, 569–589 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  15. Motoo, M.: Some evaluations for continuous Monte Carlo method by using Brownian hitting process. Ann. Inst. Statist. Math. Tokyo 11, 49–54 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mihaĭlov, G.A.: Estimation of the difficulty of simulating the process of “random walk on spheres” for some types of regions. Zh. Vychisl. Mat. i Mat. Fiz. 19(2), 510–515, 558–559 (1979)

    Google Scholar 

  17. Elepov, B.S., Kronberg, A.A., Mihaĭlov, G.A., Sabel’fel’d, K.K.: Reshenie kraevykh zadach metodom Monte-Karlo. “Nauka” Sibirsk. Otdel., Novosibirsk (1980)

    Google Scholar 

  18. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  19. Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  20. Durett, R.: Probability, Theory and Examples. Wadsworth and Brooks (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Binder, I., Braverman, M. (2007). Derandomization of Euclidean Random Walks. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2007 2007. Lecture Notes in Computer Science, vol 4627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74208-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74208-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74207-4

  • Online ISBN: 978-3-540-74208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics