Skip to main content

Abstract

We consider the following channel assignment problem arising in wireless networks. We are given a graph G = (V, E), and the number of wireless cards C v for all v, which limit the number of colors that edges incident to v can use. We also have the total number of channels C G available in the network. For a pair of edges incident to a vertex, they are said to be conflicting if the colors assigned to them are the same. Our goal is to color edges (assign channels) so that the number of conflicts is minimized. We first consider the homogeneous network where C v  = k and C G  ≥ C v for all nodes v. The problem is NP-hard by a reduction from Edge coloring and we present two combinatorial algorithms for this case. The first algorithm is a distributed greedy method, which gives a solution with at most \((1 - \frac{1}{k})|E|\) more conflicts than the optimal solution. We also present an algorithm yielding at most |V| more conflicts than the optimal solution. The algorithm generalizes Vizing’s algorithm in the sense that it gives the same result as Vizing’s algorithm when k = Δ + 1. Moreover, we show that this approximation result is best possible unless P = NP. For the case where C v  = 1 or k, we show that the problem is NP-hard even when C v  = 1 or 2, and C G  = 2, and present two algorithms. The first algorithm is completely combinatorial and produces a solution with at most \((2-\frac{1}{k}) OPT + (1 - \frac{1}{k}) |E|\) conflicts. We also develop an SDP-based algorithm, producing a solution with at most 1.122 OPT + 0.122 |E| conflicts for k = 2, and \((2-\Theta(\frac{\ln k}{k})) OPT + (1 - \Theta(\frac{\ln k}{k}))|E|\) conflicts in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raniwala, A., Chiueh, T.: Architecture and algorithms for an IEEE 802.11-based multi-ch annel wireless mesh network. In: Proceedings of Infocom (March 2005)

    Google Scholar 

  2. Kyasanur, P., Vaidya, N.H.: Routing and interface assignment in multi-channel multi-interfa ce wireless networks. In: Proceedings of WCNC (March 2005)

    Google Scholar 

  3. Alicherry, M., Bhatia, R., Li, L.E.: Joint channel assignment and routing for throughput optimization in mu lti-radio wireless mesh networks. In: Proceedings of ACM MobiCom, ACM Press, New York (2005)

    Google Scholar 

  4. Shin, M., Lee, S., Kim, Y.A.: Distributed channel assignment for multi-radio wireless networks. In: MASS. The Third IEEE International Conference on Mobile Ad-hoc and Sensor Systems, IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  5. Kann, V., Khanna, S., Lagergren, J., Panconesi, A.: On the hardness of max k-cut and its dual. In: Proc. 5th Israel Symposium on Theory and Computing Systems (ISTCS), pp. 61–67 (1996)

    Google Scholar 

  6. Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-CUT and MAX BISECTION. In: Balas, E., Clausen, J. (eds.) Integer Programming and Combinatorial Optimization. LNCS, vol. 920, pp. 1–13. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  7. Fitzpatrick, S., Meertens, L.: An experimental assessment of a stochastic, anytime, decentralized, soft colourer for sparse graphs. In: Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, Springer, Heidelberg (2001)

    Google Scholar 

  8. Damaschke, P.: Distributed soft path coloring. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 523–534. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Holyer, I.: The np-completeness of edge-coloring. SIAM J. Computing 10(4), 718–720 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vizing, V.G.: On an estimate of the chromatic class of a p-graph (russian). Diskret. Analiz. 3, 25–30 (1964)

    MathSciNet  Google Scholar 

  11. Nishizeki, T., Kashiwagi, K.: On the 1.1 edge-coloring of multigraphs. SIAM J. Disc. Math. 3(3), 391–410 (1990)

    Article  MATH  Google Scholar 

  12. Caprara, A., Rizzi, R.: Improving a family of approximation algorithms to edge color multigraphs. Information Processing Letters 68(1), 11–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kari, C., Kim, Y.A., Lee, S., Russell, A., Shin, M.: Soft edge coloring (2007), Full version available at http://www.engr.uconn.edu/~ykim/soft.pdf

  14. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite programming. In: Proc. 35th IEEE Symposium on Foundations of Computer Science, pp. 2–13. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  15. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM Journal on Optimization 5(1), 13–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grotschel, M., Lovasz, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grotschel, M., Lovasz, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  18. Nesterov, V., Nemirovskii, A.: Self-concordant functions and polynomial time methods in convex programming. Central Economical and Mathematical Institute, U.S.S.R. Academy of Science, Moscow (1990)

    Google Scholar 

  19. Nesterov, V., Nemirovskii, A.: Interior-point polynomial algorithms in convex programming. SIAM (1994)

    Google Scholar 

  20. Golub, G.H., Loan, C.F.V.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1983)

    MATH  Google Scholar 

  21. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM 42, 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Galambos, J.: The asymptotic theory of extreme order statistics. Wiley, New York (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kari, C., Kim, YA., Lee, S., Russell, A., Shin, M. (2007). Soft Edge Coloring . In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2007 2007. Lecture Notes in Computer Science, vol 4627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74208-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74208-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74207-4

  • Online ISBN: 978-3-540-74208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics