Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4682))

Included in the following conference series:

Abstract

In this paper, a new framework for data analysis based on the “key points” in data distribution is proposed. Here, the key points contain three types of data points: bridge points, border points, and skeleton points, where our main contribution is the bridge points. For each type of key points, we have developed the corresponding detection algorithm and tested its effectiveness with several synthetic data sets. Meanwhile, we further developed a new hierarchical clustering algorithm SPHC (Skeleton Point based Hierarchical Clustering) to demonstrate the possible applications of the key points acquired. Based on some real-world data sets, we experimentally show that SPHC performs better compared with several classical clustering algorithms including Complete-Link Hierarchical Clustering, Single-Link Hierarchical Clustering, KMeans, Ncut, and DBSCAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div89/handbook/ (2006)

  2. Han, J.W., Kamber, M.: Data Mining: Concepts and Techniques. China Machine Press, Beijing (2003)

    Google Scholar 

  3. Wilson, D.R., Martinez, T.R.: Instance Pruning Techniques. In: Proceedings of the 14th International Conference on Machine Learning, pp. 403–411. Morgan Kaufmann Publishers Inc, San Francisco (1997)

    Google Scholar 

  4. Moat, A., Takaoka, T.: An All Paris Shortest Path Algorithm with Expected Time O(n2logn). SIAM Journal on Computing 16(6), 1023–1031 (1987)

    Article  MathSciNet  Google Scholar 

  5. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, Second Edition. Publishing House of Electronics Industry, Beijing (2003)

    Google Scholar 

  6. Xia, C.Y., Hsu, W., Lee, M.L., BORDER, B.C.: Efficient Computation of Boundary Points. IEEE Transactions on Knowledge and Data Engineering 18(3), 289–303 (2006)

    Article  Google Scholar 

  7. Chaudhuri, D., Chaudhuri, B.B.: A Novel Nonhierarchical Data Clustering Technique. IEEE Transactions on Systems, Man, and Cybernetics?part B: Cybernetics 27(5), 871–877 (1997)

    Article  Google Scholar 

  8. Estivill-Castro, V., Lee, I.: AutoClust: Automatic Clustering via Boundary Extraction for Massive Point-Data Sets. In: Proceedings of the 5th International Conference on Geocomputation (2000)

    Google Scholar 

  9. Colliot, O., Tuzikov, A.V., Cesar, R.M., Bloch, I.: Approximate Reflectional Symmetries of Fuzzy Objects with An Application in Model-based Object Recognition. Fuzzy Sets and Systems 147, 141–163 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chaudhuri, D., Murthy, C.A., Chaudhuri, B.B.: Finding a Subset of Representative Points in a Data Set. IEEE Transactions on Systems, Man, and Cybernetics 24(9), 1416–1424 (1994)

    Article  Google Scholar 

  11. Mitra, P., Murthy, C.A., Pal, S.K.: Density-Based Multiscale Data Condensation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(6), 734–747 (2002)

    Article  Google Scholar 

  12. Ansari, N., Huang, K.W.: Non-Parametric Dominant Point Detection. SPIE Visual Communications and Image Processing: Image Processing vol. 1606, pp. 31–42 (1991)

    Google Scholar 

  13. Yao, Y.H., Chen, L.H., Chen, Y.Q.: Using Cluster Skeleton as Prototype for Data Labeling. IEEE Transactions on Systems, Man, and Cybernetics?part B: Cybernetics 30(6), 895–904 (2000)

    Article  Google Scholar 

  14. Choi, W.P., Lam, K.M., Siu, W.C.: Extraction of the Euclidean Skeleton Based on a Connectivity Criterion. Pattern Recognition 36, 721–729 (2003)

    Article  MATH  Google Scholar 

  15. Blake, L., Merz, J.: UCI Repository of Machine Learning Databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  16. Xu, R., Wunsch, D.: Survey of Clustering Algorithms. IEEE Transaction on Neural Networks 16(3), 645–678 (2005)

    Article  Google Scholar 

  17. Shi, J.B., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2002)

    Google Scholar 

  18. Ester, M., Kriegel, H.P., Sander, J., Xu, X.W.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, S., Zhang, Y. (2007). Key Point Based Data Analysis Technique. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2007. Lecture Notes in Computer Science(), vol 4682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74205-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74205-0_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74201-2

  • Online ISBN: 978-3-540-74205-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics