6 Experimental Precision Tests for the Electroweak Standard Model

Part of the Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms book series (volume 21A)

Abstract

This document is part of Subvolume A ‘Theory and Experiments’ of Volume 21 ‘Elementary Particles’ of Landolt-Börnstein - Group I ‘Elementary Particles, Nuclei and Atoms’. It contains the Chapter ‘6 Experimental Precision Tests for the Electroweak Standard Model’ with the content.

6 Experimental Precision Tests for the Electroweak Standard Model

6.1 Introduction

6.2 Fermion-Pair Production and the Z Resonance

6.2.1 Introduction

6.2.2 Z Lineshape and Forward-Backward Asymmetries

6.2.3 Polarised Asymmetries at SLC

6.2.3.1 Left-Right Asymmetry

6.2.3.2 Left-Right Forward-Backward Asymmetry

6.2.3.3 Summary

6.2.4 Tau Polarisation at LEP

6.2.5 Heavy Quark Flavours b and c

6.2.5.1 Introduction

6.2.5.2 Tagging Methods

6.2.5.3 Partial Width Measurements

6.2.5.4 Asymmetry Measurements

6.2.5.5 Corrections and Systematic Uncertainties

6.2.5.6 Combined Results

6.2.6 Inclusive Hadronic Charge Asymmetry

6.2.7 Z Boson Properties and Effective Couplings

6.2.7.1 Z-Boson Decay Widths and Number of Neutrinos

6.2.7.2 The Asymmetry Parameters

6.2.7.3 Effective Couplings of the Neutral Weak Current

6.2.7.4 The Effective Electroweak Mixing Angle

6.3 The W Boson

6.3.1 W Bosons at Hadron Colliders

6.3.1.1 Production of W Bosons

6.3.1.2 Determination of W-Boson Mass and Width

6.3.2 W Bosons at LEP-II

6.3.2.1 Production of W Bosons

6.3.2.2 Determination of W-Boson Mass and Width

6.4 The Top Quark

6.4.1 Top Quark Production

6.4.2 Mass of the Top Quark

6.5 Low-Energy Measurements

6.5.1 Parity Violation in Atoms

6.5.2 Parity Violation in Möller Scattering

6.5.3 Neutrino-Nucleon Scattering

6.5.4 Anomalous Magnetic Moment of the Muon

6.6 Constraints on the Standard Model

6.6.1 Introduction

6.6.2 Z-Pole Results

6.6.3 The Mass of the Top Quark and of the W Boson

6.6.4 The Mass of the Higgs Boson

6.7 Summary and Conclusion

6.7.1 Prospects for the Future

Related Links:

Landolt-Börnstein Homepage

Volume I/21A

Keywords

electroweak standard model precision tests fermion pair production Z resonance left-right asymmetry forward-backward asymmetry charge asymmetry tau polarisation quark flavours Z boson W boson mass decay effective coupling neutral weak current electroweak mixing angle top quark parity violation neutrino-nucleon scattering muon anomalous magnetic moment Standard Model constraints Higgs boson 

6.9 References for 6

  1. [1]
    S. L. Glashow, Nucl. Phys. 22 (1961) 579; S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264; A. Salam, Weak and Electromagnetic Interactions, p. 367, in Elementary Particle Theory, Proceedings of the 1968 Nobel Symposium, ed. N. Svartholm, (Almquist and Wiksells, Stockholm, 1968); M. Veltman, Nucl. Phys. B7 (1968) 637; G. ’t Hooft, Nucl. Phys. B35 (1971) 167; G. ’t Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189; G. ’t Hooft and M. Veltman, Nucl. Phys. B50 (1972) 318Google Scholar
  2. [2]
    SLD Collaboration, M. J. Fero et al., Nucl. Instrum. Meth. A367 (1995) 111; SLD Collaboration, D. Axen et al., Nucl. Instrum. Meth. A328 (1993) 472; SLD Collaboration, K. Abe et al., Nucl. Instrum. Meth. A343 (1994) 74; SLD Collaboration, S. C. Berridge et al., IEEE Trans. Nucl. Sci. 39 (1992) 1242Google Scholar
  3. [3]
    SLAC Linear Collider Conceptual Design Report, SLAC-R-229, Internal report, SLAC, 1980Google Scholar
  4. [4]
    ALEPH Collaboration, D. Decamp et al., Nucl. Instrum. Meth. A294 (1990) 121–178; ALEPH Collaboration, D. Buskulic et al., Nucl. Instrum. Meth. A360 (1995) 481–506Google Scholar
  5. [5]
    DELPHI Collaboration, P. Aarnio et al., Nucl. Instrum. Meth. A303 (1991) 233–276; DELPHI Collaboration, P. Abreu et al., Nucl. Instrum. Meth. A378 (1996) 57–100Google Scholar
  6. [6]
    L3 Collaboration, B. Adeva et al., Nucl. Instrum. Meth. A289 (1990) 35–102; M. Acciarri et al., Nucl. Instrum. Meth. A351 (1994) 300–312; M. Chemarin et al., Nucl. Instrum. Meth. A349 (1994) 345–355; A. Adam et al., Nucl. Instrum. Meth. A383 (1996) 342–366Google Scholar
  7. [7]
    OPAL Collaboration, K. Ahmet et al., Nucl. Instrum. Meth. A305 (1991) 275–319; OPAL Collaboration, P. P. Allport et al., Nucl. Instrum. Meth. A324 (1993) 34–52; OPAL Collaboration, P. P. Allport et al., Nucl. Instrum. Meth. A346 (1994) 476–495; OPAL Collaboration, B. E. Anderson et al., IEEE Trans. Nucl. Sci. 41 (1994) 845–852Google Scholar
  8. [8]
    LEP Design Report, CERN-LEP/84-01, Internal report, CERN, 1984, The main features of LEP have been reviewed by: S. Myers and E. Picasso, Contemp. Phys. 31 (1990) 387–403; D. Brandt et al., Rept. Prog. Phys. 63 (2000) 939–1000, A useful retrospective view of the accelerator is presented in: R. Assmann, M. Lamont, and S. Myers, Nucl. Phys. Proc. Suppl. 109B (2002) 17–31Google Scholar
  9. [9]
    CDF Collaboration, F. Abe et al., Nucl. Instr. Meth. A271 (1988) 387–403Google Scholar
  10. [10]
    D0 Collaboration, S. Abachi et al., Nucl. Instrum. Meth. A338 (1994) 185–253; D0 Collaboration, V. M. Abazov et al., Nucl. Instrum. Meth. A565 (2006) 463–537Google Scholar
  11. [11]
    Muon G-2 Collaboration, G. W. Bennett et al., Phys. Rev. D73 (2006) 072003Google Scholar
  12. [12]
    C. S. Wood et al., Science 275 (1997) 1759CrossRefGoogle Scholar
  13. [13]
    S. C. Bennett and C. E. Wieman, Phys. Rev. Lett. 82 (1999) 2484–2487ADSCrossRefGoogle Scholar
  14. [14]
    J. S. M. Ginges and V. V. Flambaum, Phys. Rept. 397 (2004) 63–154ADSCrossRefGoogle Scholar
  15. [15]
    SLAC E158 Collaboration, P. Anthony et al., Phys. Rev. Lett. 92 (2004) 181602Google Scholar
  16. [16]
    SLAC E158 Collaboration, P. L. Anthony et al., Phys. Rev. Lett. 95 (2005) 081601Google Scholar
  17. [17]
    NuTeV Collaboration, G. P. Zeller et al., Phys. Rev. Lett. 88 (2002) 091802, erratum: 90 (2003) 239902Google Scholar
  18. [18]
    G. Montagna et al., Nucl. Phys. B401 (1993) 3–66; G. Montagna et al., Comput. Phys. Commun. 76 (1993) 328–360; G. Montagna et al., Comput. Phys. Commun. 93 (1996) 120–126; G. Montagna et al., Comput. Phys. Commun. 117 (1999) 278–289, updated to include initial state pair radiation (G. Passarino, priv. comm.)Google Scholar
  19. [19]
    D. Y. Bardin et al., Z. Phys. C44 (1989) 493; D. Y. Bardin et al., Comput. Phys. Commun. 59 (1990) 303–312; D. Y. Bardin et al., Nucl. Phys. B351 (1991) 1–48; D. Y. Bardin et al., Phys. Lett. B255 (1991) 290–296; D. Y. Bardin et al., ZFITTER: An Analytical program for fermion pair production in e + e annihilation, Eprint arXiv:hep-ph/9412201, 1992; D. Y. Bardin et al., Comput. Phys. Commun. 133 (2001) 229–395, updated with results from [137]; Two Fermion Working Group, M. Kobel, et al., Two-fermion production in electron positron collisions, Eprint hep-ph/0007180, 2000; A. B. Arbuzov et al., ZFITTER: a semi-analytical program for fermion pair production in e+e- annihilation, from version 6.21 to version 6.42, Eprint hep-ph/0507146, 2005Google Scholar
  20. [20]
    W. Beenakker, F.A. Berends and S.C. van der Marck, Nucl. Phys. B349 (1991) 323–368, (ALIBABA)ADSCrossRefGoogle Scholar
  21. [21]
    ALEPH Collaboration, D. Decamp et al., Z. Phys. C48 (1990) 365–392; ALEPH Collaboration, D. Decamp et al., Z. Phys. C53 (1992) 1–20; ALEPH Collaboration, D. Buskulic et al., Z. Phys. C60 (1993) 71–82; ALEPH Collaboration, D. Buskulic et al., Z. Phys. C62 (1994) 539–550; ALEPH Collaboration, R. Barate et al., Eur. Phys. J. C14 (2000) 1–50Google Scholar
  22. [22]
    DELPHI Collaboration, P. Abreu et al., Nucl. Phys. B367 (1991) 511–574; DELPHI Collaboration, P. Abreu et al., Nucl. Phys. B417 (1994) 3–57; DELPHI Collaboration, P. Abreu et al., Nucl. Phys. B418 (1994) 403–427; DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C16 (2000) 371–405Google Scholar
  23. [23]
    L3 Collaboration, B. Adeva et al., Z. Phys. C51 (1991) 179–204; L3 Collaboration, O. Adriani et al., Phys. Rept. 236 (1993) 1–146; L3 Collaboration, M. Acciarri et al., Z. Phys. C62 (1994) 551–576; L3 Collaboration, M. Acciarri et al., Eur. Phys. J. C16 (2000) 1–40Google Scholar
  24. [24]
    OPAL Collaboration, G. Alexander et al., Z. Phys. C52 (1991) 175–208; OPAL Collaboration, P. D. Acton et al., Z. Phys. C58 (1993) 219–238; OPAL Collaboration, R. Akers et al., Z. Phys. C61 (1994) 19–34; OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C19 (2001) 587–651Google Scholar
  25. [25]
    The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the SLD Electroweak and Heavy Flavour Groups, Phys. Rept. 427 (2006) 257Google Scholar
  26. [26]
    R. Assmann et al., Eur. Phys. J. C6 (1999) 187–223ADSCrossRefGoogle Scholar
  27. [27]
    SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 70 (1993) 2515–2520; SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 73 (1994) 25–29; SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 78 (1997) 2075–2079; SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 84 (2000) 5945–5949Google Scholar
  28. [28]
    SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 86 (2001) 1162–1166Google Scholar
  29. [29]
    SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 79 (1997) 804–808Google Scholar
  30. [30]
    P. H. Eberhard et al., in Z Physics At Lep 1. Proceedings, Workshop, Geneva, Switzerland, September 4-5, 1989. Vol. 1: Standard Physics, CERN 89-08, ed. G. Altarelli, R. Kleiss, and C. Verzegnassi, (CERN, Geneva, Switzerland, 1989), pp. 235–265Google Scholar
  31. [31]
    ALEPH Collaboration, A. Heister et al., Eur. Phys. J. C20 (2001) 401–430; ALEPH Collaboration, D. Buskulic et al., Z. Phys. C69 (1996) 183–194; ALEPH Collaboration, D. Buskulic et al., Z. Phys. C59 (1993) 369–386; ALEPH Collaboration, D. Decamp et al., Phys. Lett. B265 (1991) 430–444Google Scholar
  32. [32]
    DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C14 (2000) 585–611; DELPHI Collaboration, P. Abreu et al., Z. Phys. C67 (1995) 183–202Google Scholar
  33. [33]
    L3 Collaboration, M. Acciarri et al., Phys. Lett. B429 (1998) 387–398; L3 Collaboration, M. Acciarri et al., Phys. Lett. B341 (1994) 245–256; L3 Collaboration, O. Adriani et al., Phys. Lett. B294 (1992) 466–478Google Scholar
  34. [34]
    OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C21 (2001) 1–21; OPAL Collaboration, G. Alexander et al., Z. Phys. C72 (1996) 365–375; OPAL Collaboration, R. Akers et al., Z. Phys. C65 (1995) 1–16; OPAL Collaboration, G. Alexander et al., Phys. Lett. B266 (1991) 201–217Google Scholar
  35. [35]
    M. Davier et al., Phys. Lett. B306 (1993) 411–417ADSGoogle Scholar
  36. [36]
    S. Jadach, B.F.L. Ward and Z. Wa¸s, Comput. Phys. Commun. 79 (1994) 503, (KORALZ 4.0)ADSCrossRefGoogle Scholar
  37. [37]
    E. Barbiero, B. van Eijk, and Z. Wa¸s, Comput. Phys. Commun. 66 (1991) 115, CERN-TH 7033/93, (PHOTOS)ADSCrossRefGoogle Scholar
  38. [38]
    Particle Data Group, C. Caso et al., Eur. Phys. J. C3 (1998) 1–794Google Scholar
  39. [39]
    Particle Data Group, D. E. Groom et al., Eur. Phys. J. C15 (2000) 1–878Google Scholar
  40. [40]
    R. Decker and M. Finkemeier, Phys. Rev. D48 (1993) 4203ADSGoogle Scholar
  41. [41]
    M. Finkemeier, Radiative corrections to the decay τ → πν, Ph.D. thesis, University of Karlsruhe, Feb 1994Google Scholar
  42. [42]
    ALEPH Collaboration, D. Buskulic et al., Phys. Lett. B313 (1993) 535–548Google Scholar
  43. [43]
    ALEPH Collaboration, R. Barate et al., Phys. Lett. B401 (1997) 150–162Google Scholar
  44. [44]
    DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C10 (1999) 415–442Google Scholar
  45. [45]
    DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C32 (2004) 185–208Google Scholar
  46. [46]
    L3 Collaboration, M. Acciarri et al., Eur. Phys. J. C13 (2000) 47–61Google Scholar
  47. [47]
    OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C8 (1999) 217–239Google Scholar
  48. [48]
    D. J. Jackson, Nucl. Instrum. Meth. A388 (1997) 247–253Google Scholar
  49. [49]
    ALEPH Collaboration, R. Barate et al., Phys. Lett. B401 (1997) 163–175Google Scholar
  50. [50]
    SLD Collaboration, K. Abe et al., Phys. Rev. D71 (2005) 112004Google Scholar
  51. [51]
    ALEPH Collaboration, R. Barate et al., Eur. Phys. J. C4 (1998) 557–570Google Scholar
  52. [52]
    ALEPH Collaboration, R. Barate et al., Eur. Phys. J. C16 (2000) 597–611Google Scholar
  53. [53]
    DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C12 (2000) 225–241Google Scholar
  54. [54]
    DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C12 (2000) 209–224Google Scholar
  55. [55]
    OPAL Collaboration, G. Alexander et al., Z. Phys. C72 (1996) 1–16Google Scholar
  56. [56]
    OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C1 (1998) 439–459Google Scholar
  57. [57]
    ALEPH Collaboration, A. Heister et al., Eur. Phys. J. C22 (2001) 201–215Google Scholar
  58. [58]
    ALEPH Collaboration, A. Heister et al., Eur. Phys. J. C24 (2002) 177–191Google Scholar
  59. [59]
    DELPHI Collaboration, P. Abreu et al., Z. Phys. C65 (1995) 569–586; DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C34 (2004) 109–125Google Scholar
  60. [60]
    DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C10 (1999) 219–237Google Scholar
  61. [61]
    DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C40 (2005) 1–25Google Scholar
  62. [62]
    L3 Collaboration, O. Adriani et al., Phys. Lett. B292 (1992) 454–462; L3 Collaboration, M. Acciarri et al., Phys. Lett. B448 (1999) 152–162Google Scholar
  63. [63]
    L3 Collaboration, M. Acciarri et al., Phys. Lett. B439 (1998) 225–236Google Scholar
  64. [64]
    OPAL Collaboration, G. Abbiendi et al., Phys. Lett. B546 (2002) 29–47Google Scholar
  65. [65]
    OPAL Collaboration, G. Abbiendi et al., Phys. Lett. B577 (2003) 18–36Google Scholar
  66. [66]
    OPAL Collaboration, G. Alexander et al., Z. Phys. C73 (1997) 379–395Google Scholar
  67. [67]
    ALEPH Collaboration, R. Barate et al., Phys. Lett. B434 (1998) 415–425Google Scholar
  68. [68]
    SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 88 (2002) 151801; SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 83 (1999) 3384–3389Google Scholar
  69. [69]
    SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 81 (1998) 942–946; SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 90 (2003) 141804Google Scholar
  70. [70]
    SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 83 (1999) 1902–1907Google Scholar
  71. [71]
    SLD Collaboration, K. Abe et al., Phys. Rev. Lett. 94 (2005) 091801Google Scholar
  72. [72]
    SLD Collaboration, K. Abe et al., Phys. Rev. D63 (2001) 032005Google Scholar
  73. [73]
    LEP Heavy Flavor Working Group, D. Abbaneo et al., Eur. Phys. J. C4 (1998) 185–191Google Scholar
  74. [74]
    G. Altarelli and B. Lampe, Nucl. Phys. B391 (1993) 3–22ADSGoogle Scholar
  75. [75]
    V. Ravindran and W. L. van Neerven, Phys. Lett. B445 (1998) 214–222ADSGoogle Scholar
  76. [76]
    S. Catani and M. H. Seymour, JHEP 9907 (1999) 023ADSCrossRefGoogle Scholar
  77. [77]
    ALEPH, DELPHI, L3, OPAL Collaborations, Nucl. Instrum. Meth. A378 (1996) 101–115Google Scholar
  78. [78]
    A. Freitas and K. Mönig, Eur. Phys. J. C40 (2005) 493–496ADSCrossRefGoogle Scholar
  79. [79]
    ALEPH Collaboration, D. Buskulic et al., Z. Phys. C71 (1996) 357–378Google Scholar
  80. [80]
    DELPHI Collaboration, P. Abreu et al., Phys. Lett. B277 (1992) 371–382Google Scholar
  81. [81]
    OPAL Collaboration, P. D. Acton et al., Phys. Lett. B294 (1992) 436–450Google Scholar
  82. [82]
    UA1 Collaboration, G. Arnison et al., Phys. Lett. B122 (1983) 103; UA2 Collaboration, M. Banner et al., Phys. Lett. B122 (1983) 476Google Scholar
  83. [83]
    UA1 Collaboration, G. Arnison et al., Phys. Lett. B126 (1983) 398; UA2 Collaboration, P. Bagnaia et al., Phys. Lett. B129 (1983) 130Google Scholar
  84. [84]
    D0 Collaboration, B. Abbott et al., Phys. Rev. D62 (2000) 092006Google Scholar
  85. [85]
    D0 Collaboration, V. M. Abazov et al., Phys. Rev. D66 (2002) 012001Google Scholar
  86. [86]
    CDF Collaboration, A. A. Affolder et al., Phys. Rev. D64 (2001) 052001Google Scholar
  87. [87]
    The CDF Collaboration, First Measurement of the W bosons Mass in Run II of the Tevatron, preprint arXiv:0707.0085 [hep-ex]; First Run II Measurement of the W Boson Mass, preprint arXiv:0708.3642 [hep-ex]Google Scholar
  88. [88]
    CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 74 (1995) 341–345Google Scholar
  89. [89]
    CDF Collaboration, A. A. Affolder et al., Phys. Rev. Lett. 85 (2000) 3347–3352Google Scholar
  90. [90]
    D0 Collaboration, V. M. Abazov et al., Phys. Rev. D66 (2002) 032008Google Scholar
  91. [91]
    The DØ Collaboration, Direct Measurement of the W Boson Width in \(p\bar{p}\) Collisions at \(\sqrt{s} = 1.96\) TeV, DØ Note 4563-CONF (August 2004)Google Scholar
  92. [92]
    The CDF Collaboration, the DØ Collaboration, and the Tevatron Electroweak Working Group, Phys. Rev. D70 (2004) 092008Google Scholar
  93. [93]
    Tevatron Electroweak Working Group Collaboration, (2005)Google Scholar
  94. [94]
    The LEP Collaborations ALEPH, DELPHI, L3, OPAL, and the LEP Electroweak Working Group, A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Eprint hep-ex/0612034 and update winter 2007, http://www.cern.ch/LEPEWWG, CERN, 2006Google Scholar
  95. [95]
    ALEPH Collaboration, R. Barate et al., Phys. Lett. B401 (1997) 347–362Google Scholar
  96. [96]
    DELPHI Collaboration, P. Abreu et al., Phys. Lett. B397 (1997) 158–170Google Scholar
  97. [97]
    L3 Collaboration, M. Acciarri et al., Phys. Lett. B398 (1997) 223–238Google Scholar
  98. [98]
    OPAL Collaboration, K. Ackerstaff et al., Phys. Lett. B389 (1996) 416–428Google Scholar
  99. [99]
    ALEPH Collaboration, S. Schael et al., (2006)Google Scholar
  100. [100]
    DELPHI Collaboration, J. Abdallah et al., (2006)Google Scholar
  101. [101]
    L3 Collaboration, M. Acciarri et al., Euro. Phys. C 45 (2006) 569Google Scholar
  102. [102]
    OPAL Collaboration, G. Abbiendi, hep-ex/0508060 (2005)Google Scholar
  103. [103]
    M. Cacciari et al., JHEP 04 (2004) 068ADSCrossRefGoogle Scholar
  104. [104]
    N. Kidonakis and R. Vogt, Phys. Rev. D68 (2003) 114014ADSGoogle Scholar
  105. [105]
    D0 Collaboration, V. M. Abazov, (2006)Google Scholar
  106. [106]
    The CDF Collaboration, Search for Single Top Quark Production in 955/pb using the Matrix Element Technique, CDF Note 8588, November 2006Google Scholar
  107. [107]
    The DØ Collaboration, Measurement of the top quark mass in the lepton+jets channel using DØ run-II Data: The Low Bias Template Method, DØ Note 4728, March 2005Google Scholar
  108. [108]
    The CDF Collaboration, Measurement of the top mass in the all-hadronic channel using the template method with 1.02/fb, CDF Note 8420, July 2006Google Scholar
  109. [109]
    DØ Collaboration, V. M. Abazov et al., Nature 429 (2004) 638–642Google Scholar
  110. [110]
    CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 82 (1999) 271–276Google Scholar
  111. [111]
    CDF Collaboration, F. Abe et al., Erratum: Phys. Rev. Lett. 82 (1999) 2808–2809Google Scholar
  112. [112]
    DØ Collaboration, B. Abbott et al., Phys. Rev. D60 (1999) 052001Google Scholar
  113. [113]
    CDF Collaboration, T. Affolder et al., Phys. Rev. D63 (2001) 032003Google Scholar
  114. [114]
    CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 79 (1997) 1992–1997Google Scholar
  115. [115]
    CDF Collaboration, A. Abulencia et al., Phys. Rev. D 75 (2007) 031105(R)Google Scholar
  116. [116]
    The CDF Collaboration, A. Abulencia et al., Measurement of the Top-Quark Mass in the Lepton+Jets Channel using the Decay Length Technique, CDF Conference Note 8133, accepted by Phys. Rev. D.Google Scholar
  117. [117]
    The CDF Collaboration, A. Abulencia et al., Measurement of the Top-Quark Mass with 940 pb−1 using the Matrix Element Analysis Technique, CDF Conference Note 8375Google Scholar
  118. [118]
    The CDF Collaboration, A. Abulencia et al., Measurement of the top quark mass in the all hadronic channel using an in-situ calibration of the dijet invariant mass with with 0.9 fb−1 , CDF Note 8709Google Scholar
  119. [119]
    The DØ Collaboration, V.M. Abazov et al., Measurement of the top quark mass with the matrix element method using the lepton+jets 1 fb−1 data set, DØ-note 5362-CONF.Google Scholar
  120. [120]
    The DØ Collaboration, V.M. Abazov et al., Measurement of the top quark mass in dilepton events with neutrino weighting in Run-II at DØ, DØ-note 5347-CONF.Google Scholar
  121. [121]
    The Tevatron Electroweak Working Group on behalf of the CDF and DØ Collaborations, (2007)Google Scholar
  122. [122]
    Particle Data Group, S. Eidelman, et al., Phys. Lett. B592 (2004) 1Google Scholar
  123. [123]
    E. A. Paschos and L. Wolfenstein, Phys. Rev. D7 (1973) 91–95ADSGoogle Scholar
  124. [124]
    T. Kinoshita and M. Nio, Phys. Rev. Lett. 90 (2003) 021803ADSCrossRefGoogle Scholar
  125. [125]
    T. Kinoshita and M. Nio, Phys. Rev. D70 (2004) 113001ADSGoogle Scholar
  126. [126]
    M. Davier and W. J. Marciano, Ann. Rev. Nucl. Part. Sci. 54 (2004) 115–140ADSCrossRefGoogle Scholar
  127. [127]
    M. Davier et al., Eur. Phys. J. C31 (2003) 503–510ADSGoogle Scholar
  128. [128]
    K. Hagiwara et al., Phys. Lett. B557 (2003) 69–75ADSGoogle Scholar
  129. [129]
    K. Hagiwara et al., Phys. Rev. D69 (2004) 093003ADSGoogle Scholar
  130. [130]
    S. Eidelman and F. Jegerlehner, Z. Phys. C67 (1995) 585–602ADSGoogle Scholar
  131. [131]
    H. Burkhardt and B. Pietrzyk, Phys. Lett. B356 (1995) 398–403ADSGoogle Scholar
  132. [132]
    H. Burkhardt and B. Pietrzyk, Phys. Rev. D72 (2005) 057501ADSGoogle Scholar
  133. [133]
    M. L. Swartz, Phys. Rev. D53 (1996) 5268–5282; A. D. Martin and D. Zeppenfeld, Phys. Lett. B345 (1995) 558–563; R. Alemany, M. Davier, and A. Hocker, Eur. Phys. J. C2 (1998) 123–135; M. Davier and A. Hocker, Phys. Lett. B419 (1998) 419–431; J. H. Kuhn and M. Steinhauser, Phys. Lett. B437 (1998) 425–431; F. Jegerlehner, in Proceedings, 4th International Symposium, RADCOR’98, ed. J. Sola, (World Scientific, Singapore, Sep 1999), p. 75; J. Erler, Phys. Rev. D59 (1999) 054008; A. D. Martin, J. Outhwaite, and M. G. Ryskin, Phys. Lett. B492 (2000) 69–73; J. F. de Troconiz and F. J. Yndurain, Phys. Rev. D65 (2002) 093002; K. Hagiwara et al., Phys. Rev. D69 (2004) 093003Google Scholar
  134. [134]
    J. F. de Troconiz and F. J. Yndurain, Phys. Rev. D71 (2005) 073008ADSGoogle Scholar
  135. [135]
    S. Bethke, Nucl. Phys. Proc. Suppl. 135 (2004) 345–352ADSCrossRefGoogle Scholar
  136. [136]
    ALEPH, DELPHI, L3, and OPAL Collaborations, Phys. Lett. B565 (2003) 61–75Google Scholar
  137. [137]
    A. B. Arbuzov, JHEP 07 (2001) 043ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.UCD School of PhysicsUniversity College DublinDublin 4Ireland
  2. 2.Department of Subatomic PhysicsUniversity of GhentGhentBelgium

Personalised recommendations