Skip to main content

CIDER: Corrected Inverse-Denoising Filter for Image Restoration

  • Conference paper
  • 1379 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4679))

Abstract

In this paper we propose and develop a new algorithm, Corrected Inverse-Denoising filtER (CIDER) to restore blurred and noisy images. The approach is motivated by a recent algorithm ForWaRD, which uses a regularized inverse filter followed by a wavelet denoising scheme. In ForWaRD, the restored image obtained by the regularized inverse filter is a biased estimate of the original image. In CIDER, the correction term is added to this restored image such that the resulting one is an unbiased estimator. Similarly, the wavelet denoising scheme can be applied to suppress the residual noise. Experimental results show that the performance of CIDER is better than other existing methods in our comparison study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew, H., Hunt, B.: Digital Image Restoration. Prentice-Hall, Englewood Cliffs, NJ (1977)

    Google Scholar 

  2. Banham, M.R., Katsaggelos, A.K.: Spatially Adaptive Wavelet-based Multiscale Image Restoration. IEEE Transactions on Image Processing 5, 619–634 (1996)

    Article  Google Scholar 

  3. Biemond, J., Lagendijk, R.: Regularized Iterative Image Restoration in a Weighted Hilbert Space, Acoustics, Speech, and Signal Processing. In: IEEE International Conference on ICASSP 1986, vol. 11, pp. 1485–1488 (1986)

    Google Scholar 

  4. Daubechies, I.: Orthonormal Bases of Compactly Supported Wavelets. Communications on Pure and Applied Mathematics 41, 909–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Donoho, D.L.: Denoising by Soft-thresholding. IEEE Trans. Inform. Theory 41, 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Donoho, D.L.: Nonlinear Solution of Linear Inverse Problems by Wavelet-vaguelette Decompositions. J. Appl. Comput. Harmon. Anal. 1, 100–115 (1995)

    Article  MathSciNet  Google Scholar 

  7. Donoho, D.L., Johnstone, I.M.: Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Figueiredo, M.A., Nowak, R.D.: An EM Algorithm for Wavelet-based Image Restoration. IEEE Transactions on Image Processing 8, 906–916 (2003)

    Article  MathSciNet  Google Scholar 

  9. Galatsanos, N.P., Katsaggelos, A.K.: Methods for Choosing the Regularization Parameter and Estimating the Noise Variance in Image Restoration and their Relation. IEEE Trans. Image Proc. 1, 322–336 (1992)

    Article  Google Scholar 

  10. Ghael, S., Sayeed, A., Baraniuk, R.: Improved Wavelet Denoising via Empirical Wiener Filtering. Proc. SPIE. Wavelet Applications in Signal and Image Processing V 3169, 389–399 (1997)

    Google Scholar 

  11. Gopinath, R., Lang, M., Guo, H., Odegard, J.: Enhancement of Decompressed Images at Low Bit Rates. SPIE Math. Imagaging: Wavelet Applications in Signal and Image Processing 2303, 366–377 (1994)

    Google Scholar 

  12. Hillery, A., Chin, R.: Iterative Wiener Filters for Image Restoration. IEEE Transaction on Signal Processing 39, 1892–1899 (1991)

    Article  Google Scholar 

  13. Kang, M.G., Katsaggelos, A.K.: General Choice of the Regularization Functional in Regularized Image Restoration. IEEE Transactions on Image Processing 4, 594–602 (1995)

    Article  Google Scholar 

  14. Liu, J., Moulin, P.: Complexity-regularized image restoration. In: Proc. IEEE Int. Conf. on Image Processing-ICIP 1998, Chicago, IL, vol. 1, pp. 555–559 (1998)

    Google Scholar 

  15. Neelamani, R., Choi, H., Baraniuk, R.: ForWaRD: Fourier-Wavelet Regularized Deconvolution for Ill-Conditioned Systems. IEEE Transactions on Signal Processing 52, 418–433 (2004)

    Article  MathSciNet  Google Scholar 

  16. Nowak, R.D., Thul, M.J.: Wavelet-vaguelette Restoration in Photon-limited Imaging. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2869–2872 (1998)

    Google Scholar 

  17. Wen, Y., Ching, W., Ng, M.: A Hybrid Algorithm for Spatial and Wavelet Domains Image Restoration, Visual Communications and Image Processing 2005. In: Proceeding of the Society of Photo-optical Instrumentation Engineers, pp 2004–2011 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan L. Yuille Song-Chun Zhu Daniel Cremers Yongtian Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wen, YW., Ng, M., Ching, Wk. (2007). CIDER: Corrected Inverse-Denoising Filter for Image Restoration. In: Yuille, A.L., Zhu, SC., Cremers, D., Wang, Y. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2007. Lecture Notes in Computer Science, vol 4679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74198-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74198-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74195-4

  • Online ISBN: 978-3-540-74198-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics