Skip to main content

Shape Classification Based on Skeleton Path Similarity

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4679))

Abstract

Most of the traditional methods for shape classification are based on contour. They often encounter difficulties when dealing with classes that have large nonlinear variability, especially when the variability is structural or due to articulation. It is well-known that shape representation based on skeletons is superior to contour based representation in such situations. However, approaches to shape similarity based on skeletons suffer from the instability of skeletons and matching of skeleton graphs is still an open problem. Using a skeleton pruning method, we are able to obtain stable pruned skeletons even in the presence of significant contour distortions. In contrast to most existing methods, it does not require converting of skeleton graphs to trees and it does not require any graph editing. We represent each shape as set of shortest paths in the skeleton between pairs of skeleton endpoints. Shape classification is done with Bayesian classifier. We present excellent classification results for complete shape.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. PAMI 24(4), 509–522 (2002)

    Google Scholar 

  2. Sebastian, T., Klein, P., Kimia, B.: Shock-Based Indexing into Large Shape Databases. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 731–746. Springer, Heidelberg (2002)

    Google Scholar 

  3. Sun, K.B., Super, B.J.: Classification of Contour Shapes Using Class Segment Sets. CVPR, 727–733 (2005)

    Google Scholar 

  4. Blum, H.: Biological Shape and Visual Science. J. Theoretical Biology 38, 205–287 (1973)

    Article  MathSciNet  Google Scholar 

  5. Sebastian, T.B., Kimia, B.B.: Curves vs skeletons in object recognition. Signal Processing 85, 247–263 (2005)

    Article  Google Scholar 

  6. Basri, R., Costa, L., Geiger, D., Jacobs, D.: Determining the Similarity of Deformable Shapes. Vision Research 38, 2365–2385 (1998)

    Article  Google Scholar 

  7. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing Images Using the Hausdorff Distance. IEEE Trans. Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)

    Article  Google Scholar 

  8. Shaked, D., Bruckstein, A.M.: Pruning Medial Axes. Computer Vision and Image Understanding 69(2), 156–169 (1998)

    Article  Google Scholar 

  9. Choi, W.-P., Lam, K.-M., Siu, W.-C.: Extraction of the Euclidean skeleton based on a connectivity criterion. Pattern Recognition 36(3), 721–729 (2003)

    Article  MATH  Google Scholar 

  10. Bai, X., Latecki, L.J., Liu, W.-Y.: Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution. IEEE Trans. Pattern Analysis and Machine Intelligence 29(3), 449–462 (2007)

    Article  Google Scholar 

  11. Ogniewicz, R.L., Kubler, O.: Hierarchic voronoi skeletons. Pattern Recognition 28, 343–359 (1995)

    Article  Google Scholar 

  12. Zhu, S.C., Yuille, A.L.: FORMS: A flexible object recognition and modeling system. Int. J. Computer Vision (IJCV) 20(3), 187–212 (1996)

    Google Scholar 

  13. Liu, T., Geiger, D.: Approximate Tree Matching and Shape Similarity. In: Proc. Int. Conf. Computer Vision (ICCV), pp. 456–462 (1999)

    Google Scholar 

  14. Geiger, D., Liu, T., Kohn, R.V.: Representation and self-similarity of shapes. IEEE Trans. Pattern Anal. Mach. Intell. 25(1) (2003)

    Google Scholar 

  15. Di Ruberto, C.: Recognition of shapes by attributed skeletal graphs. Pattern Recognition 37(1), 21–31 (2004)

    Article  Google Scholar 

  16. Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1105–1120 (1999)

    Article  Google Scholar 

  17. BarHill, A., Hertz, T., Weinshall, D.: Object class recognition by boosting a part based model. CVPR (2005)

    Google Scholar 

  18. Fussenegger, M., Opelt, A., Pinz, A., Auer, P.: Object Recognition Using Segmentation for Feature Detection. In: Proc. Int. Conf. Pattern Recognition (ICPR), pp. 41–44 (2004)

    Google Scholar 

  19. Gorelick, L., Galun, M., Sharon, E., Basri, R., Brandt, A.: Shape Representation and Classification Using the Poisson Equation. IEEE Trans. Pattern Analysis and Machine Intelligence 28(12), 1991–2005 (2006)

    Article  Google Scholar 

  20. Aslan, C., Tari, S.: An Axis Based Representation for Recognition. ICCV, 1339–1346 (2005)

    Google Scholar 

  21. Torsello, A., Hancock, E.R.: A skeletal measure of 2D shape similarity. Computer Vision and Image Understanding 95(1), 1–29 (2004)

    Article  Google Scholar 

  22. Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K., Zucker, S.W.: Indexing hierarchical structures using graph spectra. IEEE Trans. Pattern Analysis and Machine Intelligence 27(7), 1125–1140 (2005)

    Article  Google Scholar 

  23. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Analysis and Machine Intelligence 26(5), 550–571 (2004)

    Article  Google Scholar 

  24. Siddiqi, K., Shokoufandeh, A., Dickenson, S.J., Zucker, S.W.: Shock graphs and shape matching. ICCV, 222–229 (1998)

    Google Scholar 

  25. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 30, 1–24 (1999)

    Google Scholar 

  26. Tu, Z., Yuille, A.L.: Shape Matching and Recognition Using Generative Models and Informative Features. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 195–209. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan L. Yuille Song-Chun Zhu Daniel Cremers Yongtian Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, X., Bai, X., Yu, D., Latecki, L.J. (2007). Shape Classification Based on Skeleton Path Similarity. In: Yuille, A.L., Zhu, SC., Cremers, D., Wang, Y. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2007. Lecture Notes in Computer Science, vol 4679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74198-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74198-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74195-4

  • Online ISBN: 978-3-540-74198-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics