Skip to main content

Influence of Algal Secondary Metabolites on Plankton Community Structure

  • Chapter
Algal Chemical Ecology

Plankton chemical ecologists face numerous challenges in understanding the roles of chemical signalling and defence. They have to deal with a community of diverse species living in high dilutions in the nearly homogenous environments of oceans and lakes. During the annual cycle the community structure changes dramatically, but local influences, such as gradients in light, nutrients, and temperature, also can influence species composition. Despite the fact that the open water is not wellstructured on local scales and offers no spatial niches, the plankton is extremely species-rich and never reaches equilibrium (Scheffer et al. 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson TR (2005) Plankton functional type modelling: running before we can walk? J Plankton Res 27:1073–1081

    Google Scholar 

  • Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355

    Article  PubMed  CAS  Google Scholar 

  • Azam F, Worden AZ (2004) Microbes, molecules, and marine ecosystems. Science 303: 1622–1624

    Article  PubMed  CAS  Google Scholar 

  • Babica P, Blaha L, Marsalek B (2006) Exploring the natural role of microcystins – a review of effects on photoautotrophic organisms. J Phycol 42:9–20

    Article  Google Scholar 

  • Burks RL, Lodge DM (2002) Cued in: advances and opportunities in freshwater chemical ecology. J Chem Ecol 28:1901–1917

    Article  PubMed  CAS  Google Scholar 

  • Caldwell GS, Watson SB, Bentley MG (2004) How to assess toxin ingestion and postingestion partitioning in zooplankton? J Plankton Res 26:1369–1377

    Article  CAS  Google Scholar 

  • Cembella AD (2003) Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 42:420–447

    Google Scholar 

  • Daranas AH, Norte M, Fernandez JJ (2001) Toxic marine microalgae. Toxicon 39:1101–1132

    Article  PubMed  CAS  Google Scholar 

  • DeLong EE (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF, Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:336–342

    Article  PubMed  CAS  Google Scholar 

  • Dicke M, Sabelis M (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2:131–139

    Article  Google Scholar 

  • Dittmann E, Wiegand C (2006) Cyanobacterial toxins – occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res 50:7–17

    Article  PubMed  CAS  Google Scholar 

  • Doney SC, Abbott MR, Cullen JJ, Karl DM, Rothstein L (2004) From genes to ecosystems: the ocean’s new frontier. Front Ecol Environ 2:457–466

    Article  Google Scholar 

  • Droop MR (2007) Vitamins, phytoplankton and bacteria: symbiosis or scavenging? J Plankton Res 29:107–113

    Article  CAS  Google Scholar 

  • Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  PubMed  CAS  Google Scholar 

  • Flynn KJ (2005) Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers. J Plankton Res 27:205–210

    Article  Google Scholar 

  • Fontana A (2007) Chemistry of oxylipin pathways in marine diatoms. Pure Appl Chem 79:481–490

    Article  CAS  Google Scholar 

  • Franklin DJ, Brussaard CPD, Berges JA (2006) What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol 41:1–14

    Article  Google Scholar 

  • Friedman MA, Levin BE (2005) Neurobehavioral effects of harmful algal bloom (HAB) toxins:. a critical review. J Int Neuropsychol Soc 11:331–338

    Article  PubMed  CAS  Google Scholar 

  • Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Article  Google Scholar 

  • Hallmann A, Godl K, Wenzl S, Sumper M (1998) The highly efficient sex-inducing pheromone system of Volvox. Trends Microbiol 6:185–189

    Article  PubMed  CAS  Google Scholar 

  • Hay ME (1996) Marine chemical ecology: What’s known and what’s next? J Exp Mar Biol Ecol 200:103–134

    Article  CAS  Google Scholar 

  • Hay ME, Kubanek J (2002) Community and ecosystem level consequences of chemical cues in the plankton. J Chem Ecol 28:2001–2016

    Article  PubMed  CAS  Google Scholar 

  • Hay ME, Parker JD, Burkepile DE, Caudill CC, Wilson AE, Hallinan ZP, Chequer AD (2004) Mutualisms and aquatic community structure: The enemy of my enemy is my friend. Ann Rev Ecol Evol Syst 35:175–197

    Article  Google Scholar 

  • Ianora A, Boersma M, Casotti R, Fontana A, Harder J, Hoffmann F, Pavia H, Potin P, Poulet SA, Toth G (2006) New trends in marine chemical ecology. Estuaries Coasts 29:531–551

    CAS  Google Scholar 

  • Irigoien X (2004) Some ideas about the role of lipids in the life cycle of Calanus finmarchicus. J Plankton Res 26:259–263

    Article  Google Scholar 

  • Irigoien X (2006) Reply to Horizons Article “Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers” Flynn (2005). Shiny mathematical castles built on grey biological sands. J Plankton Res 28:965–967

    Article  Google Scholar 

  • Irigoien X, Flynn KJ, Harris RP (2005) Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact? J Plankton Res 27:313–321

    Article  Google Scholar 

  • Lampert W, Sommer U (1997) Limnoecology: the ecology of lakes and streams. Oxford University Press, Oxford

    Google Scholar 

  • Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390

    Article  Google Scholar 

  • Lass S, Spaak P (2003) Chemically induced antipredator defences in plankton: a review. Hydrobiologia 491:221–239

    Article  Google Scholar 

  • Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol 52:199–214

    Article  CAS  Google Scholar 

  • Legrand C, Rengefors K, Fistarol GO, Graneli E (2003) Allelopathy in phytoplankton–biochemical, ecological and evolutionary aspects. Phycologia 42:406–419

    Article  Google Scholar 

  • Le Quere C (2006) Reply to Horizons Article “Plankton functional type modelling: running before we can walk” Anderson (2005): I. Abrupt changes in marine ecosystems? J Plankton Res 28:871–872

    Article  Google Scholar 

  • Maier I, Muller DG (1986) Sexual pheromones in algae. Biol Bull 170:145–175

    Article  CAS  Google Scholar 

  • Malbrouck C, Kestemont P (2006) Effects of microcystins on fish. Environ Toxicol Chem 25:72–86

    Article  PubMed  CAS  Google Scholar 

  • McClintock JB, Baker BJ, Steinberg DK (2001) The chemical ecology of invertebrate meroplankton and holoplankton. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, FL, pp 195–225

    Google Scholar 

  • McElhiney J, Lawton LA (2005) Detection of the cyanobacterial hepatotoxins microcystins. Toxicol Appl Pharmacol 203:219–230

    Article  PubMed  CAS  Google Scholar 

  • Miner BG, Sultan SE, Morgan SG, Padilla DK, Relyea RA (2005) Ecological consequences of phenotypic plasticity. Trends Ecol Evol 20:685–692

    Article  PubMed  Google Scholar 

  • Mitra A, Flynn KJ (2005) Predator-prey interactions: is ‘ecological stoichiometry’ sufficient when good food goes bad? J Plankton Res 27:393–399

    Article  Google Scholar 

  • Moore BS (1999) Biosynthesis of marine natural products: microorganisms and macroalgae. Nat Prod Rep 16:653–674

    Article  PubMed  CAS  Google Scholar 

  • Moore BS (2005) Biosynthesis of marine natural products: microorganisms (Part A). Nat Prod Rep 22:580–593

    Article  PubMed  CAS  Google Scholar 

  • Msagati TAM, Siame BA, Shushu DD (2006) Evaluation of methods for the isolation, detection and quantification of cyanobacterial hepatotoxins. Aquatic Toxicol 78:382–397

    Article  CAS  Google Scholar 

  • Paffenhofer GA, Ianora A, Miralto A, Turner JT, Kleppel GS, d’Alcala MR, Casotti R, Caldwell GS, Pohnert G, Fontana A, Muller-Navarra D, Jonasdottir S, Armbrust V, Bamstedt U, Ban S, Bentley MG, Boersma M, Bundy M, Buttino I, Calbet A, Carlotti F, Carotenuto Y, d’Ippolito G, Frost B, Guisande C, Lampert W, Lee RF, Mazza S, Mazzocchi MG, Nejstgaard JC, Poulet SA, Romano G, Smetacek V, Uye S, Wakeham S, Watson S, Wichard T (2005) Colloquium on diatom-copepod interactions. Mar Ecol Prog Ser 286:293–305

    Article  Google Scholar 

  • Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organisms. Nat Prod Rep 21:189–209

    Article  PubMed  CAS  Google Scholar 

  • Paul VJ, Puglisi MP, Ritson-Williams R (2006) Marine chemical ecology. Nat Prod Rep 23:153–180

    Article  PubMed  CAS  Google Scholar 

  • Pohnert G (2004) Chemical defense strategies of marine organisms. In: Schulz S (ed) Chemistry of pheromones and other semiochemicals, vol 1. Springer, Berlin, pp 179–219

    Chapter  Google Scholar 

  • Pohnert G (2005) Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae. ChemBioChem 6:946–959

    Article  PubMed  CAS  Google Scholar 

  • Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122

    Article  PubMed  CAS  Google Scholar 

  • Pohnert G, Steinke M, Tollrian R (2007) Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol Evol 22:198–204

    Article  PubMed  Google Scholar 

  • Prince EK, Lettieri L, McCurdy KJ, Kubanek J (2006) Fitness consequences for copepods feeding on a red tide dinoflagellate: deciphering the effects of nutritional value, toxicity, and feeding behavior. Oecologia 147:479–488

    Article  PubMed  Google Scholar 

  • Scheffer M, Rinaldi S, Huisman J, Weissing FJ (2003) Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491:9–18

    Article  Google Scholar 

  • Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30:383–406

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y (1993) Microalgal metabolites. Chem Rev 93:1685–1698

    Article  CAS  Google Scholar 

  • Shimizu Y (1996) Microalgal metabolites: a new perspective. Ann Rev Microbiol 50:431–465

    Article  CAS  Google Scholar 

  • Shimizu Y (2003) Microalgal metabolites. Curr Opin Microbiol 6:236–243

    Article  PubMed  CAS  Google Scholar 

  • Shurin JB, Gruner DS, Hillebrand H (2006) All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc B 273:1–9

    Article  PubMed  Google Scholar 

  • Smayda TJ (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42:1137–1153

    Google Scholar 

  • Smetacek V (2001) A watery arms race. Nature 411:745s

    Article  Google Scholar 

  • Smetacek V (2002) Microbial food webs: the ocean’s veil. Nature 419:565

    Article  PubMed  CAS  Google Scholar 

  • Steinke M, Malin G, Liss PS (2002) Trophic interactions in the sea: an ecological role for climate relevant volatiles? J Phycol 38:630–638

    Article  CAS  Google Scholar 

  • Tillmann U (2004) Interactions between planktonic microalgae and protozoan grazers. J Eukaryot Microbiol 51:156–168

    Article  PubMed  Google Scholar 

  • Van Donk E (2006) Food web interactions in lakes. In: Dicke M, Takken W (eds) Chemical ecology: from gene to ecosystem. Springer, Heidelberg, pp 145–160

    Google Scholar 

  • van Holthoon FL, van Beek TA, Lurling M, Van Donk E, De Groot A (2003) Colony formation in Scenedesmus: a literature overview and further steps towards the chemical characterisation of the Daphnia kairomone. Hydrobiologia 491:241–254

    Article  Google Scholar 

  • von Elert E, Pohnert G (2000) Predator specificity of kairomones in diel vertical migration of Daphnia: a chemical approach. Oikos 88:119–128

    Article  Google Scholar 

  • Vos M, Vet LEM, Wackers FL, Middelburg JJ, van der Putten WH, Mooij WM, Heip CHR, van Donk E (2006) Infochemicals structure marine, terrestrial and freshwater food webs: implications for ecological informatics. Ecol Inf 1:23–32

    Google Scholar 

  • Watson SB (2003) Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity. Phycologia 42:332–350

    Article  Google Scholar 

  • Weissburg MJ (2000) The fluid dynamical context of chemosensory behavior. Biol Bull 198:188–202

    Article  PubMed  CAS  Google Scholar 

  • Wolfe GV (2000) The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biol Bull 198:225–244

    Article  PubMed  CAS  Google Scholar 

  • Yen J (2000) Life in transition: balancing inertial and viscous forces by planktonic copepods. Biol Bull 198:213–224

    Article  PubMed  CAS  Google Scholar 

  • Yen J, Weissburg MJ, Doall MH (1998) The fluid physics of signal perception by mate-tracking copepods. Phil Trans R Soc Lond B Biol Sci 353:787–804

    Article  CAS  Google Scholar 

  • Zimmer RK, Butman CA (2000) Chemical signaling processes in the marine environment. Biol Bull 198:168–187

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pohnert, G. (2008). Influence of Algal Secondary Metabolites on Plankton Community Structure. In: Amsler, C.D. (eds) Algal Chemical Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74181-7_9

Download citation

Publish with us

Policies and ethics