Skip to main content

Macroalgal Chemical Defenses in Polar Marine Communities

  • Chapter
Book cover Algal Chemical Ecology

Macroalgae are considerably less diverse at polar latitudes than in most temperate and tropical regions but they can still be very important components of benthic marine communities in polar waters (Dayton 1990; Wiencke et al. 2007). In fact, at some locations they can rival the biomass present in temperate kelp forests (e.g., Amsler et al. 1995). Wiencke et al. (2007) recently reviewed the ecophysiology and ecology of polar macroalgae and provided a brief overview of the state of our knowledge about their chemical defenses. The present chapter significantly expands upon that overview. Previous in-depth reviews of Antarctic marine chemical ecology (Amsler et al. 2001a, b) included macroalgae, but our knowledge of Antarctic macroalgal chemical ecology, although still relatively sparse when compared with lower latitudes, has expanded greatly since 2001. Indeed, of the 14 published or unpublished studies of polar macroalgal chemical defenses featured herein, only 3 were completed before 2001. Likewise, potential ecological roles of some Antarctic macroalgal secondary metabolites have been determined in recent years (Ankisetty et al. 2004; Lebar et al. 2007), but there are still relatively few secondary metabolites known from polar macroalgae. Not counting mycosporine-like amino acids (MAAs; see Chap. 13) or volatile halogenated organic compounds (VHOCs) (see Chap. 12), both of which include specific compounds produced by a wide diversity of algae, there are only 64 macroalgal secondary metabolites known from Antarctica and none from the Arctic Ocean (other than a presumption of the presence of phlorotannins in Arctic brown algae; Amsler et al. 2001a; Blunt et al. 2006; Lebar et al. 2007). There are, however, 18 macroalgal secondary metabolites known from northern areas of the Atlantic and Pacific Oceans that experience ice cover during some times of the year (Blunt et al. 2006; Lebar et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91

    Article  CAS  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005a) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159

    Article  CAS  Google Scholar 

  • Amsler CD, Iken KB, McClintock JB, Baker BJ (2001a) Secondary metabolites from Antarctic marine organisms and their ecological implications. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, FL, pp 267–300

    Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (1998) Chemical defense against herbivory in the Antarctic marine macroalgae Iridaea cordata and Phyllophora antarctica (Rhodophyceae). J Phycol 34:53–59

    Article  CAS  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (1999) An Antarctic feeding triangle: defensive interactions between macroalgae, sea urchins, and sea anemones. Mar Ecol Prog Ser 183:105–114

    Article  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2001b) Secondary metabolites as mediators of trophic interactions among Antarctic marine organisms. Am Zool 41:17–26

    Article  CAS  Google Scholar 

  • Amsler CD, Okogbue IN, Landry DM, Amsler MO, McClintock JB, Baker BJ (2005b) Potential chemical defenses against diatom fouling in Antarctic macroalgae. Bot Mar 48:318–322

    Article  Google Scholar 

  • Amsler CD, Rowley RJ, Laur DR, Quetin LB, Ross RM (1995) Vertical distribution of Antarctic Peninsular macroalgae: cover, biomass, and species composition. Phycologia 34:424–430

    Google Scholar 

  • Ankisetty S, Nandiraju S, Win H, Park YC, Amsler CD, McClintock JB, Baker JA, Diyabalanage TK, Pasaribu A, Singh MP, Maiese WM, Walsh RD, Zaworotko MJ, Baker BJ (2004) Chemical investigation of predator-deterred macroalgae from the Antarctic Peninsula. J Nat Prod 67:1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Baker BJ (1996) Carboline and isoquinoline alkaloids from marine organisms. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 10. Pergamon, Oxford, pp 357–407

    Chapter  Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78

    Article  PubMed  CAS  Google Scholar 

  • Boettcher AA, Targett NM (1993) Role of polyphenolic molecular size in reduction of assimilation efficiency in Xiphister mucosus. Ecology 74:891–903

    Article  CAS  Google Scholar 

  • Brand TE (1976) Trophic relationships of selected benthic marine invertebrates and foraminifera in Antarctica. Antarctic J US 11:24–26

    Google Scholar 

  • Brand TE (1980) Trophic interactions and community ecology of the shallow-water marine benthos along the Antarctic Peninsula. PhD Dissertation, University of California Davis

    Google Scholar 

  • Cormaci M, Furnari G, Scammacca B (1992) The benthic algal flora of Terra Nova Bay (Ross Sea, Antarctica). Bot Mar 35:541–552

    Article  Google Scholar 

  • Cronin G (2001) Resource allocation in seaweeds and marine invertebrates. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton FL, pp 325–363

    Google Scholar 

  • Dawson R, Schramm W, Bolter M (1985) Factors influencing the production, decomposition and distribution of organic matter in Admirality Bay, King George Island. In: Seigfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer-Verlag, Berlin, pp 109–114

    Google Scholar 

  • Dayton PK (1990) Polar benthos. In: Smith WO, Jr (ed) Polar oceanography, Part B: chemistry, biology, and geology. Academic, New York, pp 631–685

    Google Scholar 

  • Dayton PK, Robillard GA, Paine RT (1970) Benthic faunal zonation as a result of anchor ice at McMurdo Sound, Antarctica. In: Holgate MW (ed) Antarctic ecology, vol 1. Academic, New York, pp 244–258

    Google Scholar 

  • DeLaca TE, Lipps JH (1976) Shallow water marine associations, Antarctic Peninsula. Antarctic J US 11:12–20

    Google Scholar 

  • Dunton K (2001) δ15N and δ13C measurements of Antarctic Peninsula fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112

    Article  Google Scholar 

  • Dunton KH, Schell DM (1987) Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community. δ13C evidence. Mar Biol 93:615–625

    Article  CAS  Google Scholar 

  • Elner R, Vadas RJ (1990) Inference in ecology: the sea urchin phenomenon in the northwest Atlantic. Am Nat 136:108–125

    Article  Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005a) Within-thallus variation in chemical and physical defenses in two species of ecologically dominant brown macroalgae from the Antarctic Peninsula. J Exp Mar Biol Ecol 233:1–12

    Article  CAS  Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005b) Variation in phlorotannin content within two species of brown macroalgae (Desmarestia anceps and D. menziesii) from the Western Antarctic Peninsula. Polar Biol 28:680–686

    Article  Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2006) Lack of defense or phlorotannin induction by UV radiation or mesograzers in Desmarestia anceps and D. menziesii (Phaeophyceae). J Phycol 42:1174–1183

    Article  CAS  Google Scholar 

  • Fischer G, Wiencke C (1992) Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar Biol 12:341–348

    Article  Google Scholar 

  • Foster MS (1992) How important is grazing to seaweed evolution and assemblage structure in the north-east Pacific? In: John DM, Hawkins SJ, Price JH (eds) Plant-animal interactions in the marine benthos. Clarendon, Oxford, pp 61–85

    Google Scholar 

  • Frederick JE, Qu Z, Booth CR (1998) Ultraviolet radiation at sites on the Antarctic coast. Photochem Photobiol 68:183–190

    Article  CAS  Google Scholar 

  • Graeve M, Dauby P, Scailteur Y (2001) Combined lipid, fatty acid and digestive tract content analyses: a penetrating approach to estimate feeding modes of Antarctic amphipods. Polar Biol 24:853–862

    Article  Google Scholar 

  • Harvell CD (1990) The ecology and evolution of inducible defenses. Q Rev Biol 65:323–340

    Article  PubMed  CAS  Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103–134

    Article  CAS  Google Scholar 

  • Hay ME, Fenical W (1988) Marine plant-herbivore interactions: the ecology of chemical defense. Ann Rev Ecol Syst 19:111–145

    Article  Google Scholar 

  • Hay ME, Steinberg PD (1992) The chemical ecology of plant-herbivore interactions in marine versus terrestrial communities. In: Rosenthal GA, Berenbaum, MR (eds) Herbivores: their interactions with secondary plant metabolites, vol. II: Evolutionary and ecological processes. Academic, New York

    Google Scholar 

  • Heywood RB, Whitaker TM (1984) The Antarctic marine flora. In: Laws RM (ed) Antarctic ecology, vol 2. Academic, London, pp 373–419

    Google Scholar 

  • Huang YM, Amsler MO, McClintock JB, Amsler CD, Baker BJ (2007) Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol 30:1417–1430

    Article  Google Scholar 

  • Huang YM, McClintock JB, Amsler CD, Peters KJ, Baker BJ (2006) Feeding rates of common Antarctic gammarid amphipods on ecologically important sympatric macroalgae. J Exp Mar Biol Ecol 329:55–65

    Article  Google Scholar 

  • Iken K (1996) Trophic relations between macroalgae and herbivores in Potter Cove (King George Island, Antarctica). Rep Polar Res 201:1–206

    Google Scholar 

  • Iken K (1999) Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria antarctica Martens. J Exp Mar Biol Ecol 236:133–148

    Article  Google Scholar 

  • Iken K, Amsler CD, Hubbard JM, McClintock JB, Baker BJ (2007) Allocation patterns of phlorotannins in Antarctic brown algae. Phycologia 46:386–395

    Article  Google Scholar 

  • Iken K, Barrera-Oro ER, Quartino ML, Casaux RJ, Brey T (1997) Grazing in the Antarctic fish Notothenia coriiceps: evidence for selective feeding on macroalgae. Antarctic Sci 9:386–391

    Article  Google Scholar 

  • Jazdzewski K, Teodorczyk W, Sicinski J, Kontek B (1991) Amphipod crustaceans as an important component of zoobenthos of the shallow Antarctic sublittoral. Hydrobiologia 223:105–117

    Article  Google Scholar 

  • Karban R, Meyers JH (1989) Induced plant responses to herbivory. Ann Rev Ecol Syst 20:331–348

    Article  Google Scholar 

  • Kim D (2001) Seasonality of marine algae and grazers of an Antarctic rocky intertidal, with emphasis on the role of the limpet Nacella concinna Strebel (Gastropoda: Patellidae). Berichte zur Polar- und Meeresforschung 397:1–120

    Google Scholar 

  • Laturnus F (1995) Release of volatile halogenated organic-compounds by unialgal cultures of polar macroalgae. Chemosphere 31:3387–3395

    Article  CAS  Google Scholar 

  • Laturnus F (2001) Marine macroalgae in polar regions as natural sources for volatile organohalogens. Environ Sci Pollut Res 8:103–108

    Article  CAS  Google Scholar 

  • Laturnus F, Adams FC, Gomez I, Mehrtens G (1997) Halogenating activities detected in Antarctic macroalgae. Polar Biol 17:281–284

    Article  Google Scholar 

  • Laturnus F, Wiencke C, Kloser H (1996) Antarctic macroalgae – sources of volatile halogenated organic compounds. Mar Environ Res 41:169–181

    Article  CAS  Google Scholar 

  • Lebar ML, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24:774–797

    Article  PubMed  CAS  Google Scholar 

  • Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biol 24:512–522

    Article  Google Scholar 

  • McClintock JB, Baker BJ (2001) Marine chemical ecology. CRC, Boca Raton, FL

    Google Scholar 

  • Miller KA, Pearse JS (1991) Ecological studies of seaweeds in McMurdo Sound, Antarctica. Am Zool 31:35–48

    Google Scholar 

  • Neushul M (1965) Diving observation of sub-tidal Antarctic marine vegetation. Bot Mar 8:234–243

    Article  Google Scholar 

  • Neushul M (1968) Benthic marine algae. Antarctic Map Folio Ser 10:9–10, plates 14–15

    Google Scholar 

  • Norkko A, Thrush SF, Cummings VJ, Funnell GA, Schwarz AM, Andrew NL, Hawes I (2004) Ecological role of Phyllophora antarctica drift accumulations in coastal soft-sediment communities of McMurdo Sound, Antarctica. Polar Biol 27:482–494

    Article  Google Scholar 

  • Pavia H, Cervin G, Lindgren A, Åberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146

    Article  CAS  Google Scholar 

  • Peters AF (2003) Molecular identification, taxonomy and distribution of brown algal endophytes, with emphasis on species from Antarctica. In: Chapman ARO, Anderson RJ, Vreeland V, Davison IR (eds) Proceedings of the 17th international seaweed symposium. Oxford University Press, New York, pp 293–302

    Google Scholar 

  • Peters KJ, Amsler CD, Amsler MO, McClintock JB, Dunbar RB, Baker BJ (2005) A comparative analysis of the nutritional and elemental composition of macroalgae from the western Antarctic Peninsula. Phycologia 44:453–463

    Article  Google Scholar 

  • Raffauf RF (1996) Plant alkaloids: a guide to their discovery and distribution. Food Products Press, Binghamton, NY

    Google Scholar 

  • Reichardt W (1987) Burial of Antarctic macroalgal debris in bioturbated deep-sea sediments. Deep-Sea Res 34:1761–1770

    Article  CAS  Google Scholar 

  • Rhoades D (1979) Evolution of plant chemical defenses against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores. Academic, New York, pp 4–54

    Google Scholar 

  • Richardson MG (1971) The ecology and physiological aspects of Antarctic weed dwelling amphipods (Preliminary report, II). British Antarctic Survey Report N9/1971(-72)/H:1–16

    Google Scholar 

  • Richardson MG (1975) The dietary composition of some Antarctic fish. Br Antarct Surv Bull 41/42:113–120

    Google Scholar 

  • Richardson MG (1977) The ecology including physiological aspects of selected Antarctic marine invertebrates associated with inshore macrophytes. PhD Dissertation, Department of Zoology, University of Durham

    Google Scholar 

  • Schwarz AM, Hawes I, Andrew N, Norkko A, Cummings V, Thrush S (2003) Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biol 26:789–799

    Article  Google Scholar 

  • Sivertsen K (1997) Geographic and environmental factors affecting the distribution of kelp beds and barren grounds and changes in biota associated with kelp reduction at sites along the Norwegian coast. Can J Fish Aquat Sci 54:2872–2887

    Article  Google Scholar 

  • Wessels H, Hagen W, Molis M, Wiencke C, Karsten U (2006) Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitsbergen) for two benthic sympatric invertebrates. J Exp Mar Biol Ecol 329:20–33

    Article  Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic seaweeds. ARG Gantner Verlag KG, Ruggell, Liechtenstein

    Google Scholar 

  • Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K (2007) Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Biotechnol 6:95–126

    Article  Google Scholar 

  • Wright JT, de Nys R, Poore AGB, Steinberg PD (2004) Chemical defense in a marine alga: heritability and the potential for selection by herbivores. Ecology 85:2946–2959

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baker, B.J., Amsler, C.D., McClintock, J.B. (2008). Macroalgal Chemical Defenses in Polar Marine Communities. In: Amsler, C.D. (eds) Algal Chemical Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74181-7_4

Download citation

Publish with us

Policies and ethics