Skip to main content

Macroalgal Chemical Defenses and Their Roles in Structuring Tropical Marine Communities

  • Chapter
Algal Chemical Ecology

The impacts of herbivores on macroalgae have been relatively well studied in the last decades (e.g., Carpenter 1986; Choat 1991; Hixon and Brostoff 1996; Harborne et al. 2006; Vinueza et al. 2006), probably because of their profound effects in both temperate and tropical communities and their importance as major conduits of energy between autotrophs and the rest of the food web. Nonetheless, very little is understood about how macroalgal chemical defenses – against herbivores or against competitors, epibionts, pathogens, etc. – function and what their exact role is in structuring marine communities. Tropical marine communities are well known to possess a plethora of macroalgal species (see Lüning 1990; Kerswell 2006), as well as an equally high diversity of herbivores (Floeter et al. 2005), which exert an intense, constant, and unparalleled pressure on the former, presumably selecting, over evolutionary timescales, for the presence of diverse and effective chemical defenses. In this scenario of bottom-up control, a number of counteradaptations are supposed to have occurred in herbivores, including feeding specialization and sequestration of defenses, which represent potential steps toward a top-down control of macroalgal communities. However, experimental evidence to support these assumptions remains largely elusive. This chapter attempts to review, although not exhaustively, our current knowledge of different aspects of chemical defenses from tropical macroalgae and their potential effects on tropical marine benthic community structure. The focus will be on known examples that support or rebut theoretical assumptions about tropical communities in an effort to point the reader toward new trends or research priorities that emerge from our current knowledge about marine tropical systems.

This chapter primarily considers aspects of chemical defenses in tropical macroalgae belonging to the divisions Chlorophyta, Phaeophyta, and Rhodophyta, but also includes macroscopic and conspicuous tropical Cyanobacteria that can be important in structuring tropical marine benthic communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amade P, Lemée R (1998) Chemical defence of the Mediterranean alga Caulerpa taxifolia: variations in caulerpenyne production. Aq Toxicol 43:287–300

    Article  CAS  Google Scholar 

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91

    Article  CAS  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159

    Article  CAS  Google Scholar 

  • Bakus GJ, Green G (1974) Toxicity in sponges and holothurians: a geographic pattern. Science 185:951–953

    Article  PubMed  CAS  Google Scholar 

  • Barbosa JP, Teixeira VL, Pereira RC (2004) A dolabellane diterpene from the brown alga Dictyota pfaffii as chemical defense against herbivores. Bot Mar 47:147–151

    Article  CAS  Google Scholar 

  • Beach K, Walters L, Borgeas H, Smith C, Coyer J, Vroom P (2003) The impact of Dictyota spp. on Halimeda populations of Conch Reef, Florida Keys. J Exp Mar Biol Ecol 297:141–159

    Article  Google Scholar 

  • Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Copp BR, Hu W-P, Munro MHG, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86

    Article  PubMed  CAS  Google Scholar 

  • Bolser RC, Hay ME (1996) Are tropical plants better defended? Palatability and defenses of temperate versus tropical seaweeds. Ecology 77:2269–2286

    Article  Google Scholar 

  • Boudouresque CF, Lemme R, Mari X, Meinesz A (1996) The invasive alga Caulerpa taxifolia is not a suitable diet for the sea urchin Paracentrotus lividus. Aq Bot 53:245–250

    Article  Google Scholar 

  • Briggs JC (1974) Marine zoogeography. McGraw-Hill, New York

    Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–346

    Article  Google Scholar 

  • Ceccherelli G, Piazzi L, Balata D (2002) Spread of introduced Caulerpa species in macroalgal habitats. J Exp Mar Biol Ecol 280:1–11

    Article  Google Scholar 

  • Chapin III FS, Sala OE, Burke IC, Grime JP, Hooper DU, Laurenroth WK, Lombard A, Mooney HA, Moiser AR, Naeem S, Pacala SW, Roy J, Steffen WL, Tilman D (1998) Ecosystem consequences of changing biodiversity. BioScience 48:45–52

    Article  Google Scholar 

  • Choat JH (1991) The biology of herbivorous fishes on coral reefs. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic, San Diego, CA, pp 120–155

    Google Scholar 

  • Clare AS (1996) Marine natural product antifoulants: status and potential. Biofouling 9:211–229

    Article  CAS  Google Scholar 

  • Clayton MN (1988) Evolution and life histories of brown algae. Bot Mar 31:379–387

    Article  Google Scholar 

  • Connell JH (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42:710–723

    Article  Google Scholar 

  • Cronin G, Hay ME (1996) Chemical defenses, protein content, and susceptibility to herbivory of diploid vs. haploid stages of the isomorphic brown alga Dictyota ciliolata (Phaeophyta). Bot Mar 39:395–399

    Article  CAS  Google Scholar 

  • Cronin G, Paul VJ, Hay ME, Fenical W (1997) Are tropical herbivores more resistant than temperate herbivores to seaweed chemical defenses? Diterpenoid metabolites from Dictyota acutiloba as feeding deterrents for tropical versus temperate fishes and urchins. J Chem Ecol 23:289–302

    Article  CAS  Google Scholar 

  • Cruz-Rivera E, Paul VJ (2007) Chemical deterrence of a cyanobacterial metabolite against generalized and specialist grazers. J Chem Ecol 33:213–217

    Article  PubMed  CAS  Google Scholar 

  • Da Gama BAP, Pereira RC, Soares AR, Teixeira VL, Yoneshigue-Valentin Y (2003) Is the mussel test a good indicator of antifouling activity? A comparison between laboratory and field tests. Biofouling 19:161–169

    Article  PubMed  CAS  Google Scholar 

  • Dahms HU, Ying X, Pfeiffer C (2006) Antifouling potential of cyanobacteria: a mini-review. Biofouling 22:317–327

    Article  PubMed  CAS  Google Scholar 

  • Davis AR, Targett NM, McConnell OJ, Young CM (1989) Epibiosis of marine and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. In: Scheuer PJ (ed) Bioorganic marine chemistry, vol 3. Springer, Berlin, pp 85–114

    Google Scholar 

  • Davis AR, Benkendorff K, Ward DW (2005) Responses of common SE Australian herbivores to three suspected invasive Caulerpa spp. Mar Biol 146:859–868

    Article  Google Scholar 

  • de Nys R, Coll JC, Price IR (1991) Chemically mediated interactions between the red alga Plocamium hamatum (Rhodophyta) and the octocoral Sinularia cruciata (Alcyonacea). Mar Biol 108:315–320

    Article  Google Scholar 

  • de Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CL, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271

    Article  Google Scholar 

  • de Nys R, Dworjanyn A, Steinberg PD (1998) A new method for determining surface concentrations of natural products on seaweeds. Mar Ecol Prog Ser 162:79–87

    Article  Google Scholar 

  • Dick LJ, De Wreede RE (1995) Patterns of seasonal demographic change in the alternate isomorphic stages of Mazzaella splendens (Gigartinales, Rhodophyta). Phycologia 34:390–395

    Google Scholar 

  • Duffy JE, Hay ME (2001) The ecology and evolution of marine consumer-prey interactions. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associate, Sunderland, Massachusetts, pp 131–157

    Google Scholar 

  • Dworjanyn SA, De Nys R, Steinberg PD (2006) Chemically mediated antifouling in the red alga Delisea pulchra. Mar Ecol Prog Ser 318:153–163

    Article  CAS  Google Scholar 

  • Engel C, Aberg P, Gaggiotti O, Destombe C, Valero M (2001) Population dynamics and stage structure in a haploid-diploid red seaweed, Gracilaria gracilis. J Ecol 89:436–450

    Article  Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2006) Lack of defense or phlorotannin induction by UV radiation or mesograzers in Desmarestia anceps and D. menziesii (Phaeophyceae). J Phycol 42:1174–1183

    Article  CAS  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48

    PubMed  CAS  Google Scholar 

  • Floeter SR, Behrens MD, Ferreira CEL, Paddack MJ, Horn MH (2005) Geographical gradients of marine herbivorous fishes: patterns and processes. Mar Biol 147:1435–1447

    Article  Google Scholar 

  • Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104

    Article  PubMed  CAS  Google Scholar 

  • Gaines SD, Lubchenco J (1982) A unified approach to marine plant-herbivore interactions. II. Biogeography. Annu Rev Ecol Syst 13:111–138

    Article  Google Scholar 

  • Gaines SD, Roughgarden J (1985) Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc Natl Acad Sci USA 82:3707–3711

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb OR (1989) The role of oxygen in phytochemical evolution towards diversity. Phytochemistry 28:2545–2548

    Article  CAS  Google Scholar 

  • Gottlieb OR (1990) Phytochemistry: differentiation and function. Phytochemistry 29:1715–1724

    Article  CAS  Google Scholar 

  • Harborne AR, Mumby PJ, Micheli F, Perry CT, Dahlgren CP, Holmes KE, Brumbaugh DR (2006) The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes. Adv Mar Biol 50:57–189

    Article  PubMed  Google Scholar 

  • Harper MK, Bugni TS, Copp BR, James RD, Lindasay BS, Richardson AD, Schnabel PC, Tasdemir D, VanWagoner RM, Verbitski SM, Ireland CM (2001) Introduction to the chemical ecology of marine natural products. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Bocca Raton, FL, pp 267–300

    Google Scholar 

  • Hay ME (1981) Spatial patterns of grazing intensity on a Caribbean barrier reef: herbivory and algal distribution. Aq Bot 11:97–109

    Article  Google Scholar 

  • Hay ME (1986) Associational plant defenses and the maintenance of species diversity: turning competitors into accomplices. Am Nat 128:617–641

    Article  Google Scholar 

  • Hay ME (1992) The role of seaweed chemical defenses in the evolution of feeding specialization and in the mediation of complex interactions. In: Paul VJ (ed) Ecological roles for marine natural products. Comstock Press, Ithaca, NY, pp 93–118

    Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103–134

    Article  CAS  Google Scholar 

  • Hay ME, Fenical W (1988) Marine plant-herbivore interactions: the ecology of chemical defense. Annu Rev Ecol Syst 19:111–145

    Article  Google Scholar 

  • Hay ME, Fenical W (1992) Chemical mediation of seaweed-herbivore interactions. In: John DM, Hawkins SS, Price JH (eds) Plant-animal interactions in the marine benthos. Systematics Association Special Volume I. Clarendon, Oxford, pp 319–337

    Google Scholar 

  • Hay ME, Fenical W (1996) Chemical ecology and marine biodiversity: insights and products from the sea. Oceanography 9:10–20

    Google Scholar 

  • Hay ME, Steinberg PD (1992) The chemical ecology of plant-herbivore interactions in marine versus terrestrial communities. In: Rosenthal J, Berenbaum M (eds) Herbivores: their interaction with secondary plant metabolites. Evolutionary and ecological processes, vol. II. Academic, New York, pp 371–413

    Google Scholar 

  • Hay ME, Fenical W, Gustafson K (1987) Chemical defense against diverse coral reef herbivores. Ecology 68:1581–1591

    Article  CAS  Google Scholar 

  • Hay ME, Duffy JE, Fenical W, Gustafson K (1988a) Chemical defense in the seaweed Dictyopteris delicatula: differential effects against reef fishes and amphipods. Mar Ecol Prog Ser 48:185–192

    Article  Google Scholar 

  • Hay ME, Renaud PE, Fenical W (1988b) Large mobile versus small sedentary herbivores and their resistance to seaweed chemical defenses. Oecologia 75:246–252

    Article  Google Scholar 

  • Hay ME, Duffy JE, Paul VJ, Renaud PE, Fenical W (1990) Specialist herbivores reduce their susceptibility to predation by feeding on the chemically-defended seaweed Avrainvillea longicaulis. Limnol Oceanogr 35:1734–1743

    Article  Google Scholar 

  • Hay ME, Kappel QE, Fenical W (1994) Synergisms in plant defenses against herbivores: interactions of chemistry, calcification, and plant quality. Ecology 75:1714–1726

    Article  Google Scholar 

  • Hay ME, Stachowicz JJ, Cruz-Rivera E, Bullard S, Deal MS, Lindquist N (1998) Bioassays with marine and freshwater macroorganisms. In: Haynes KF, Millar JG (eds) Methods in chemical ecology, vol 2. Chapman and Hall, New York, pp 39–141

    Google Scholar 

  • Hixon MA, Brostoff WN (1996) Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecology 66:77–90

    Google Scholar 

  • Horn MH (1989) Biology of marine herbivorous fishes. Oceanogr Mar Biol Ann Rev 27: 167–272

    Google Scholar 

  • Ianora A, Boersma M, Casotti R, Fontana A, Herder J, Hoffmann F, Pavia H, Potin P, Poulet SA, Toth G (2006) New trends in marine chemical ecology. Estuaries and Coasts 29:531–551

    CAS  Google Scholar 

  • Jousson O, Pawlowski J, Zaninetti L, Zechman EW, Dini F, Di Guiseppe G, Woodfield R, Millar A, Meneisz A (2000) Invasive alga reaches California. Nature 408:157–158

    Article  PubMed  CAS  Google Scholar 

  • Karez R, Engelbert S, Sommer U (2000) ‘Coconsumption’ and ‘protective coating’: two new proposed effects of epiphytes on their macroalgal hosts in mesograzer-epiphyte host interactions. Mar Ecol Prog Ser 205:85–93

    Article  Google Scholar 

  • Kerswell AP (2006) Global biodiversity patterns of benthic marine algae. Ecology 87:2479–2488

    Article  PubMed  Google Scholar 

  • Klinger T (1993) The persistence of haplodiploidy in algae. Trends Ecol Evol 8:256–258

    Article  Google Scholar 

  • Krebs CJ (2001) Ecology: the experimental analysis of distribution and abundance. Benjamin Cummings, San Francisco

    Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Leonardi PI, Miravalles AB, Faugeron S, Flores V, Beltrán J, Correa JA (2006) Diversity, phenomenology and epidemiology of epiphytism in farmed Gracilaria chilensis (Rhodophyta) in northern Chile. Eur J Phycol 41:247–257

    Article  Google Scholar 

  • Lewis SM (1985) Herbivory on coral reefs: algal susceptibility to herbivorous fishes. Oecologia 65:370–375

    Article  Google Scholar 

  • Lewis SM (1986) The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol Monogr 56:183–200

    Article  Google Scholar 

  • Lima LMS, Alor R, Uriostegui R, Murray SN, Pereira RC. Within-plant variation in palatability and chemical defenses in the green seaweed Avrainvillea elliottii. Bot Mar (submitted for publication)

    Google Scholar 

  • Littler MM, Taylor PR, Littler DS (1986) Plant defense associations in the marine environment. Coral Reefs 5:63–71

    Article  Google Scholar 

  • Lubchenco J (1978) Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am Nat 112:23–39

    Article  Google Scholar 

  • Lumbang WA, Paul VJ (1996) Chemical defenses of the tropical green seaweed Neomeris annulata Dickie: effects of multiple compounds on feeding by herbivores. J Exp Mar Biol Ecol 201:185–195

    Article  CAS  Google Scholar 

  • Lüning K (1990) Seaweeds. Their environment, biogeography, and ecophysiology. Wiley, New York

    Google Scholar 

  • Marques LV, Villaça R, Pereira RC (2006) Susceptibility of macroalgae to herbivorous fishes at Rocas Atoll, Brazil. Bot Mar 49:379–385

    Article  Google Scholar 

  • McCook LJ (1999) Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18:357–367

    Article  Google Scholar 

  • McCook LJ, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417

    Article  Google Scholar 

  • McCoy ED, Heck KL (1976) Biogeography of corals, seagrasses, and mangroves: an alternative to the center of origin concept. Syst Zool 25:201–210

    Article  Google Scholar 

  • Meneisz A, Hesse B (1991) Introduction et invasion de l’algue tropicale Caulerpa taxifolia en Mediterranée nord-occidentale. Oceanol Acta 14:415–426

    Google Scholar 

  • Meneisz A, de Vaugelas J, Hesse B, Mari X (1993) Spread of the introduced tropical green alga Caulerpa taxifolia in northern Mediterranean waters. J Appl Phycol 5:141–147

    Article  Google Scholar 

  • Meyer KD, Paul VJ, Sanger HR, Nelson SG (1994) Effects of seaweed extracts and secondary metabolites on feeding by the herbivorous surgeonfish Naso lituratus. Coral Reefs 13:105–112

    Article  Google Scholar 

  • Modena M, Matricardi G, Vacchi M, Guidetti P (2000) Spreading of Caulerpa recemosa (Forsskal) J. Agardh (Bryopsidaceae, Chlorophyta) along the coasts of the Ligurian Sea. Cryptogam Algol 21:301–304

    Article  Google Scholar 

  • Moore RE (1996) Cyclic peptides and depsipeptides from cyanobacteria: a review. J Ind Microbiol 16:134–143

    Article  PubMed  CAS  Google Scholar 

  • Morrison D (1988) Comparing fish and sea urchin grazing in shallow and deeper coral reef algal communities. Ecology 69:1367–1382

    Article  Google Scholar 

  • Moyle PB, Light T (1996) Biological invasions of fresh water: empirical rules and assemblage theory. Biol Conserv 78:149–161

    Article  Google Scholar 

  • Nagle DG, Paul VJ (1999) Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds. J Phycol 35:1412–1421

    Article  CAS  Google Scholar 

  • Nagle DG, Camacho FT, Paul VJ (1998) Dietary preferences of the opisthobranch mollusc Stylocheilus longicauda for secondary metabolites produced by the tropical cyanobacterium Lyngbya majuscula. Mar Biol 132:267–273

    Article  Google Scholar 

  • Nylund GM, Gribben PE, de Nys R, Steinberg PD, Pavia H (2007) Surface chemistry versus whole-cell extracts: antifouling tests with seaweed metabolites. Mar Ecol Prog Ser 329:73–84

    Article  Google Scholar 

  • Ogden J (1976) Some aspects of herbivore-plant relationships on Caribbean reefs and seagrass beds. Aq Bot 2:103–116

    Article  Google Scholar 

  • Paine RT (1974) Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia 15:93–120

    Article  Google Scholar 

  • Park M, Fenical W, Hay ME (1992) Debromoisocymobarbatol, a new chromanol feeding deterrent from the marine alga Cymopolia barbata. Phytochemistry 31:4115–4118

    Article  CAS  Google Scholar 

  • Paul VJ (1987) Feeding deterrent effects of algal natural products. Bull Mar Sci 41:514–522

    Google Scholar 

  • Paul VJ (1992) Ecological roles for marine natural products. Comstock, Ithaca, NY

    Google Scholar 

  • Paul VJ, Fenical W (1986) Chemical defense in tropical green algae, order Caulerpales. Mar Ecol Prog Ser 34:157–169

    Article  CAS  Google Scholar 

  • Paul VJ, Hay ME (1986) Seaweed susceptibility to herbivory: chemical and morphological correlates. Mar Ecol Prog Ser 33:255–264

    Article  CAS  Google Scholar 

  • Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organisms. Nat Prod Rep 21:189–209

    Article  PubMed  CAS  Google Scholar 

  • Paul VJ, Hay ME, Duffy JE, Fenical W, Gustafson K (1987) Chemical defense in the seaweed Ochtodes secundiramea (Montague) Howe (Rhodophyta): effects of its monoterpenoid components upon diverse coral-reef herbivores. J Exp Mar Biol Ecol 114:249–260

    Article  CAS  Google Scholar 

  • Paul VJ, Cruz-Rivera E, Thacker RW (2001) Chemical mediation of macroalgal-herbivore interactions: ecological and evolutionary perspectives. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, pp 227–265

    Google Scholar 

  • Paul VJ, Thacker RW, Banks K, Golubic S (2005) Benthic cyanobacterial bloom impacts the reefs of South Florida (Broward County, USA). Coral Reefs 24:693–697

    Article  Google Scholar 

  • Paul VJ, Puglisi MP, Ritson-Williams R (2006) Marine chemical ecology. Nat Prod Rep 23:153–180

    Article  PubMed  CAS  Google Scholar 

  • Pennings SC, Paul VJ (1992) Effect of plant toughness, calcification, and chemistry on herbivory by Dolabella auricularia. Ecology 73:1606–1619

    Article  Google Scholar 

  • Pennings SC, Puglisi MP, Pitlik TJ, Himaya AC, Paul VJ (1996) Effects of secondary metabolites and CaCO3 on feeding by surgeonfishes and parrotfishes: within-plant comparisons. Mar Ecol Prog Ser 134:49–58

    Article  CAS  Google Scholar 

  • Pennings SC, Pablo SR, Paul VJ (1997) Chemical defenses of the tropical, benthic marine cyanobacterium Hormothamnion enteromorphoides: Diverse consumers and synergisms. Limnol Oceanogr 42:911–917

    Article  Google Scholar 

  • Pereira RC, Teixeira VL (1999) Sesquiterpenos das algas marinhas Laurencia lamouroux (Ceramiales, Rhodophyta). 1. Significado ecológico. Quim Nova 22:360–374

    Google Scholar 

  • Pereira RC, Yoneshigue-Valentin Y (1999) The role of polyphenols from the tropical brown alga Sargassum furcatum on the feeding by amphipod herbivores. Bot Mar 42:441–448

    Article  CAS  Google Scholar 

  • Pereira RC, Cavalcanti DN, Teixeira VL (2000a) Effects of secondary metabolites from the tropical Brazilian brown alga Dictyota menstrualis on the amphipod Parhyale hawaiensis. Mar Ecol Prog Ser 205:95–100

    Article  CAS  Google Scholar 

  • Pereira RC, Donato R, Teixeira VL, Cavalcanti DN (2000b) Chemotaxis and chemical defenses in seaweed susceptibility to herbivory. Rev Bras Biol 60:405–414

    Article  PubMed  CAS  Google Scholar 

  • Pereira RC, Da Gama BAP, Teixeira VL, Yoneshigue-Valentin Y (2003) Ecological roles of natural products of the Brazilian red seaweed Laurencia obtusa. Rev Bras Biol 63:665–672

    CAS  Google Scholar 

  • Pereira RC, Pinheiro MD, Teixeira VL, Da Gama BAP (2002) Feeding preferences of the endemic gastropod Astraea latispina in relation to chemical defenses of Brazilian tropical seaweeds. Braz J Biol 62:33–40

    PubMed  CAS  Google Scholar 

  • Pereira RC, Soares AR, Teixeira VL, Villaça R, Da Gama BAP (2004) Variation in chemical defenses against herbivory in southwestern Atlantic Stypopodium zonale (Phaeophyta). Bot Mar 47:202–208

    Article  Google Scholar 

  • Pfister CA, Hay ME (1988) Associational plant refuges: convergent patterns in marine and terrestrial communities result from differing mechanisms. Oecologia 77:118–129

    Article  Google Scholar 

  • Piazzi L, Balestri E, Cinelli F (1994) Presence of Caulerpa racemosa in the north-western Mediterranean. Cryptogam Algol 15:183–189

    Google Scholar 

  • Ragan MA, Glombitza K-W (1986) Phlorotannins, brown algal polyphenols. Prog Phycol Res 4:129–241

    CAS  Google Scholar 

  • Railkin AI (2004) Marine biofouling: colonization processes and defenses. CRC, Boca Raton, FL

    Google Scholar 

  • Reichard SH, Hamilton CV (1997) Predicting invasions of woody plants introduced into North America. Conserv Biol 11:193–203

    Article  Google Scholar 

  • Roussis V, King RL, Fenical W (1993) Secondary metabolite chemistry of the Australian brown alga Encyothalia cliftonii: evidence for herbivore chemical defence. Phytochemistry 34:107–111

    Article  CAS  Google Scholar 

  • Sax DF, Stachowicz JJ, Gaines SD (eds) (2005) Species invasions: insights into ecology, evolution and biogeography. Sinauer, Sunderland, MA, pp 495

    Google Scholar 

  • Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically-mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76:107–123

    Article  Google Scholar 

  • Schmitt TM, Lindquist N, Hay ME (1998) Seaweed secondary metabolites as antifoulants: effects of Dictyota spp. diterpenes on survivorship, settlement, and development of invertebrate larvae. Chemoecology 8:125–131

    Article  CAS  Google Scholar 

  • Schmittner A, Stoecker TF (1999) The stability of the thermohaline circulation in global warming experiments. J Climate 12:1117–1133

    Article  Google Scholar 

  • Schnitzler I, Boland W, Hay ME (1998) Organic sulfur compounds from Dictyopteris spp. deter feeding by an herbivorous amphipod (Ampithoe longimana) but not by a herbivorous sea urchin (Arbacia punctulata). J Chem Ecol 24:1715–1732

    Article  CAS  Google Scholar 

  • Shen Y, Tsai PI, Fenical W, Hay ME (1993) Secondary metabolite chemistry of the Caribbean marine alga Sporochnus bolleanus: a basis for herbivore chemical defense. Phytochemistry 32:71–75

    Article  Google Scholar 

  • Schupp PJ, Paul VJ (1994) Calcium carbonate and secondary metabolites in tropical seaweeds: variable effects on herbivorous fishes. Ecology 75:1172–1185

    Article  Google Scholar 

  • Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262

    Article  CAS  Google Scholar 

  • Sousa WP (1979) Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol Monogr 49:227–254

    Article  Google Scholar 

  • Steinberg PD, Paul VJ (1990) Fish feeding and chemical defenses of tropical brown-algae in western Australia. Mar Ecol Prog Ser 58:253–259

    Article  Google Scholar 

  • Sudatti DB, Rodrigues SV, Pereira RC (2006) Quantitative GC-ECD analysis of halogenated metabolites: determination of surface and within-thallus elatol of Laurencia obtusa. J Chem Ecol 32:835–843

    Article  PubMed  CAS  Google Scholar 

  • Sudatti DB, Rodrigues SV, Coutinho R, Da Gama BAP, Salgado LT, Amado Filho GM, Pereira RC. Transport and defensive role of elatol at the surface of the red seaweed Laurencia obtusa. J Phycol (in press)

    Google Scholar 

  • Suzuki Y, Takabayashi T, Kawaguchi T, Matsunaga K (1998) Isolation of an allelopathic substance from the crustose coralline algae, Litophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta). J Exp Mar Biol Ecol 225:69–77

    Article  CAS  Google Scholar 

  • Targett NM, McConnell OJ (1982) Detection of secondary metabolites in marine macroalgae using the marine periwinkle, Littorina irrorata Say, as an indicator organism. J Chem Ecol 8:115–124

    Article  CAS  Google Scholar 

  • Teixeira VL, Barbosa JP, Rocha FD, Kaplan MAC, Houghton PJ, Pereira RC (2006) Hydroperoxysterols from the Brazilian brown seaweeds Dictyopteris justii and Spatoglossum schroederi (Dictyotales): a defensive strategy against herbivory. Nat Prod Commun 1: 293–297

    CAS  Google Scholar 

  • Thacker RW, Nagle DG, Paul VJ (1997) Effects of repeated exposures to marine cyanobacterial secondary metabolites on feeding by juvenile rabbitfish and parrotfish. Mar Ecol Prog Ser 147:21–29

    Article  CAS  Google Scholar 

  • Toth GB, Pavia H (2006) Artificial wounding decreases plant biomass and shoot strength of the brown seaweed Ascophyllum nodosum (Fucales, Phaeophyceae). Mar Biol 148:1193–1199

    Article  Google Scholar 

  • Tugwell S, Branch GM (1989) Differential polyphenolic distribution among tissues in the kelps Ecklonia maxima, Laminaria pallida and Macrocystis angustifolia in relation to plant-defence theory. J Exp Mar Biol Ecol 129:219–230

    Article  CAS  Google Scholar 

  • Uchimura M, Sandeauz R, Larroque C (1999) The enzymatic detoxifying system of a native Mediterranean scorpion fish is affected by Caulerpa taxifolia in its environment. Environ Sci Technol 33:1671–1674

    Article  CAS  Google Scholar 

  • Underwood AJ (2000) Experimental ecology of rocky intertidal habitats: what are we learning? J Exp Mar Biol Ecol 250:51–76

    Article  PubMed  Google Scholar 

  • Valero M, Richerd S, Perrot V, Destombe C (1992) Evolution of alternation of haploid and diploid phases in life cycles. Trends Ecol Evol 7:25–29

    Article  Google Scholar 

  • Van Alstyne KL (1995) Comparison of three methods for quantifying brown algal polyphenolic compounds. J Chem Ecol 21:45–58

    Article  CAS  Google Scholar 

  • Van Alstyne KL, Paul VJ (1990) The biogeography of polyphenolic compounds in marine macroalgae – temperate brown algal defenses deter feeding by tropical herbivorous fishes. Ooecologia 84:158–163

    Google Scholar 

  • Van der Strate H, Van de Zande L, Stam WT, Olsen JL (2002) The contribution of haploids, diploids and clones to fine-scale population structure in the seaweed Cladophoropsis membranacea (Chlorophyta). Mol Ecol 11:329–345

    Article  PubMed  Google Scholar 

  • Verlaque M, Boudouresque CF, Meinesz A, Gravez V (2000) The Caulerpa racemosa complex (Caulerpales, Ulvophyceae) in the Mediterranean sea. Bot Mar 43:49–68

    Article  Google Scholar 

  • Vinueza LR, Branch GM, Branch ML, Bustamante RH (2006) Top-down herbivory and bottom-up El Nino effects on Galapagos rocky-shore communities. Ecol Monogr 76:111–131

    Article  Google Scholar 

  • Wahl M and Hay ME (1995) Associational resistance and shared doom: effects of epibiosis on herbivory. Oecologia 102:329–340

    Article  Google Scholar 

  • Watkinson AJ, O’Neil JM, Dennison WC (2005) Ecophysiology of the marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae) in Moreton Bay, Australia. Harmful Algae 4:697–715

    Article  CAS  Google Scholar 

  • Weidner K, Lages BG, Da Gama BAP, Molis M, Wahl M, Pereira RC (2004) Effect of mesograzers and nutrient levels on induction of defenses in several Brazilian macroalgae. Mar Ecol Prog Ser 283:113–125

    Article  Google Scholar 

  • Wikström SA, Steinarsdóttir MB, Kautsky L, Pavia H (2006) Increased chemical resistance explains low herbivore colonization of introduced seaweed. Oecologia 148:593–601

    Article  PubMed  Google Scholar 

  • Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52:1189–1208

    Article  PubMed  CAS  Google Scholar 

  • Willig MR, Kaufman, DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309

    Article  Google Scholar 

  • Wylie CR, Paul VJ (1988) Feeding preferences of the surgeonfish Zebrasoma flavescens in relation to chemical defenses of tropical algae. Mar Ecol Prog Ser 45:23–32

    Article  CAS  Google Scholar 

  • Young DN, Howard BN, Fenical W (1980) Subcellular localization of brominated secondary metabolites in the red alga Laurencia snyderae. J Phycol 16:182–185

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pereira, R.C., da Gama, B.A.P. (2008). Macroalgal Chemical Defenses and Their Roles in Structuring Tropical Marine Communities. In: Amsler, C.D. (eds) Algal Chemical Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74181-7_2

Download citation

Publish with us

Policies and ethics